Development of Conceptual Models of the Impacts of ENSO and Arctic Oscillation Interactions on Intraseasonal
Temperature Extremes During the Florida Dry Season
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Table 1. Correlation coefficients (R%) of regressions of predictor variables (top row) on the mean Florida grid (see
Fig. 1 in Hagemeyer 2006) dry season 250 Mb U anomaly, storms, rainfall, mean temperature, and mean minimum
ternperature for the 1950- 2004 dry seasons. The large horizontal grid cells are the results for an entire 6-month dry
season, the smaller cells beneath are for the NQY and FMA periods as indicated for each predictand Crosshatched
cells do not have significant relationships, grey shaded cells are significant at 95% level (F ps) and un-shaded and
tan-shaded cells are significant at 99% level (F m). Tan-shaded cells are the highest correlation for each variable
and correspond to the logistic regression results on Figure 1. (Note: unless otherwise indicated in this paper, all

referenced dry season data sets and correlations are for the 1950-2004 period).

From Hagemeyer, 2007.

Logistic Regression Analysis for Average Minimum Temperatures
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Past research has shown that while the El Nifio Southern Oscillation (ENSO) has the greatest impact on rainfall and storminess during the Florida dry season (November — April) — it is the Arctic Oscillation (AO) that has the
greatest correlation with extremes of temperature — especially extreme low temperatures. The North Atlantic Oscillation (NAO) is the part of the AO affecting the North Atlantic basin. And, while the NAO and AO are highly
correlated and often of the same sign, it is the large-scale AO pattern that can have the greatest impact on Florida, especially for major intraseasonal events and on the seasonal scale. Northern Hemisphere (NH) correlation maps
for winter (DJF) surface air temperature and major synoptic parameters affecting weather patterns such as 250 mb U and 1000 mb/500 mb GPH with ENSO and AO show they both have significant impact on the Florida region with
opposing signs. While ENSO is a factor in mean temperature, logistic regression results for Florida clearly show the impact of the AO is most significant for minimum temperature. Generally, a negative/positive AO pattern is
complimentary to a positive/negative ENSO (El Nifio/La Nifia). For example, typically AO- enhances the effect of El Nino and weakens the effect of La Niia on Florida DJF temperature and rainfall and vice versa for AO+. However,
records since 1950 illustrate that both strongly negative and positive AO conditions can coexist during DJF in strong El Nifios. Positive AO conditions are most likely to exist on the seasonal scale during La Nifia conditions, and it
becomes increasingly difficult for strongly negative AO conditions to develop during La Nifias. During DJF, strong phases of the AO are less likely during ENSO neutral conditions, but both strong AO -/+ have occurred. Examples
of the four extreme phases of AO and ENSO illustrate that on the seasonal scale the influence of the AO can overwhelm the expected influence of ENSO and reverse the sign and magnitude of the expected temperature and rainfall
anomalies!

This study was designed to focus on extreme intraseasonal combinations of ENSO and AO during DJF to see if general conceptual models could be developed to better understand their interactions and be used in
outreach for seasonal forecasts. The historical relationships of the influence of AO and ENSO on temperature are statistically strong, but the AO cannot be predicted reliably more than a few weeks in advance. Reliable long-range
forecasts of AO persistence are not possible at this time. Nevertheless, increasing knowledge about its interaction with ENSO would be helpful as unexpected extremes of heat and cold are often incorrectly attributed to ENSO in
winter. Examples of four of the most extreme intraseasonal combinations of AO and ENSO on the scale of approximately a month during DJF illustrate how profoundly the AO can influence the expected ENSO-related synoptic
weather patterns and temperature of Florida and much of the nation. Generally, AO+ conditions and warmer than normal temperature have an overwhelmingly positive impact on the economy, although some sectors can be
harmed by unusual warmth. The negative phase of the AO is most impacting to Florida and has the greatest potential for economic harm and societal disruption due to the increased potential for extreme cold and/or prolonged
cold spells. The most recent extreme negative AO event during La Nifia resulting in the coldest December ever in Florida in 2010 was unusual. It is the extreme negative AO combined with El Niio that is potentially most
impacting and responsible for notable extreme historical cold and stormy periods during DJF -- most recently during winter 2009-10.

This preliminary study revealed some important caveats that serve as a reality check in adopting any overly simplistic conceptual models of extreme events during the Florida dry season. Neutral ENSO and AO
conditions remain problematic as noteworthy major freezes have occurred during these conditions, and AO- during ENSO neutral conditions have produced devastating freezes as well. Some of the most devastating freezes have
not occurred during extended AO- conditions, but have been brief, singular events during the winter that were preceded by unusual warmth and, thus, more damaging. We have considered primarily extremes of temperature;
however, extreme rainfall and frequent winter storms and violent deadly tornadoes are also highly impacting events during the Florida dry season, especially during moderate and strong El Nifio conditions. Indications are that
extremely wet and stormy dry season periods are associated with El Nifios characterized by high frequency-low amplitude fluctuations in the daily AO index; i.e., progressive and stormy weather patterns. Indeed, the extended
extreme negative AO event during the 2009-10 season resulted in land and water temperatures too cold to support organized severe weather outbreaks, and that was a positive benefit that helped offset the negative impacts of
extreme cold weather. This study does not address the physical mechanisms of AO and ENSO interaction or their predictability, but it does highlight their importance as a challenge for the future. In particular, the two extreme
ENSO/AO interactions that are highly complementary and additive: positive AO and La Nifna and negative AO and EI Niio can result in extreme warmth and drought and extreme cold and storminess, respectively, and these are the
two most significant impact scenarios during the Florida dry season.

Examples of Intraseasonal Extremes of AO and ENSO (1950-2011)
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Logistic Regression Analysis for Average Minimum Temperatures
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Mean monthly anomalies of NH 1000mb GPH, 500mb GPH, and 250 mb zonal wind corresponding to the periods represented by the blue ovals above.
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Caveats — This study relates to extreme cold weather - extreme rainfall and severe weather outbreaks

in Florida during El Ninos occur more typically during high frequency, low amplitude AO periods —i.e

progressive and stormy!
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