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1. Research Questions

• What drives the uncertainties in projected local precipitation 
change? Is it mostly modelling uncertainty or natural 

variability?

• Do their relative roles vary spatially?

• Can we begin to understand these variations?

• What else does this teach us about the mechanisms of 

anticipated changes in the hydrological cycle?
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2. Data

Main Ensemble:

• ‘AS-PPE-A’ – Atmosphere-Slab Model (HadSM3), Perturbed 

Physics Ensemble, with perturbed Atmos. parameters

280 model versions

Experiments – Cntl & 2xCO2, both run to equilibrium + 20 
years

Other Ensembles:

• ‘AO-PPE-A’ – Atmosphere-Ocean Model PPE (HadCM3), with perturbed 
Atmospheric parameters

17 model versions

Experiments – Cntl (150 years) & A1B (1860-2099)

• ‘AOC-PPE-C’ – Atmosphere-Ocean-Carbon Model (HadCM3C) PPE, with 
perturbed terrestrial carbon cycle parameters

17 model versions

Experiments – Cntl (240 years) & A1B (1860-2099) 

• ‘AO-MME’ – Atmosphere-Ocean Multi-Model Ensemble (CMIP3)

16 models

Experiments – Cntl (240+ years) & 1% CO2 rise + 79 years stabilisation

3. Method

• Compute the total uncertainty in the change in 20-year mean 
precipitation (∆P), at each grid point, for each season, and 

each ensemble:

• Compute the natural variability (eg. by scaling the 
interannual variability; see paper for further detail), and then 

compute modelling uncertainty as a residual:

• Compute the fraction (%) of the total uncertainty that's due to 

modelling uncertainty:

This is the metric plotted in Figs.1,2,3.

• Note that the magnitude of R is affected by the spatio-

temporal scale of analysis. For example, use of longer time-
means and/or larger space scales would increase R.

6. Conclusions

• The balance between modelling uncertainty and natural 
variability varies widely for future changes in local 

precipitation.

• Modelling uncertainty dominates in the deep tropics, summer 
mid-latitude continents, and polar winters.

• Natural variability dominates in the sub-tropical and lower 
mid-latitude oceans, Australia, and the Sahara in DJF.

• The relative roles of modelling uncertainty and natural 
variability are broadly similar between the perturbed physics 

ensembles and CMIP3 data. But at local scales R is 
unreliable for small ensembles, such as CMIP3.

• In the moist maritime tropics, highly uncertain modelling of 
SST changes is transmitted to large uncertain modelling of 
local rainfall changes.

• Over tropical land, uncertain modelling of atmospheric 
processes, land surface processes and the terrestrial carbon 

cycle also appear to play a substantial role.

• In polar regions, inter-model variability of sea-ice anomalies 

drives an uncertain winter precipitation response.
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Figure 1 shows:

• A rich spatial structure in the pattern of the relative roles of
modelling uncertainty and natural variability.

• Modelling uncertainty is dominant over the equatorial east 
and central Pacific, the equatorial Atlantic, the wet seasons 

of Africa and South America, parts of Asia, the mid-latitude 
summer continents, and the polar winters.

• Natural variability is dominant over the sub-tropical and lower 
mid-latitude oceans, Australia, and the Sahara in DJF.

• Uncertainties in modelling the terrestrial carbon cycle are 
often important over tropical land, the northern mid-latitude 
summer continents, and the winter Arctic.

• The large-scale pattern of R is broadly similar between all 
ensembles (except AOC-PPE-C)

• However, the smaller ensembles are more noisy and less 
useful for this type of study.

Fig.1 Maps of R, the percentage of total uncertainty in local 
precipitation change due to modelling uncertainty. (Note, AS17-

PPE-A is a sub-ensemble of 17 models from AS-PPE-A, to 

illustrate the impact of using smaller samples.)

Fig.4 Maps of the percentage of variance of bidecadal seasonal 

mean precipitation that has been due to oceanic forcing in the 
20th century. This is computed from an ensemble of 4 SST-forced 

1870-2002 HadAM3 simulations.

Fig.2 Zonal means of R, the percentage of the total uncertainty in 

local precipitation change due to modelling uncertainty. Solid line 
shows the standard analysis. Dashed line shows an analysis 

using the residual of local precipitation change after removing the 

component that is linearly related to ∆TGlobal .

Fig.3 Maps of R, the percentage of the total uncertainty due to 
modelling uncertainty, for 1.5m air temperature. (Note the 

different scale to Fig.1.)

So:

• Over the equatorial oceans, the large uncertainty in 

modelling SST changes is transmitted to large uncertainty in 
modelling rainfall changes.

• Over much of the mid-latitude and arid sub-tropical oceans, 
chaotic atmospheric variations are likely to continue to 

dominate bidecadal anomalies in the 21st century. (But see 
exceptions listed in the paper.)

• Over the tropical continents, uncertain modelling of rainfall 

changes is not adequately accounted for by the transmission 
of uncertain SST changes, suggesting that uncertain 

modelling of the local response to GHGs (and of land-
surface feedbacks) is also important.

• Over mid-latitude continents, uncertain modelling of SSTs, 
local radiative responses to GHGs, and chaotic variability, all 
play important and varying roles.

• In the polar winters, uncertain modelling of the remaining 
sea-ice fraction is critical.

Aside: Using R as an Alternative Approach for Quantifying Uncertainties in Projected Precipitation Change

Uncertainty in projected changes in precipitation is often quantified by counting the 
models with the same sign of anomaly (eg. IPCC AR4). But this:

• Does not quantify uncertainties in the amplitude of change, which is important for 

climate change impacts.

• Does not indicate whether the ensemble mean changes close to zero are robust or 
uncertain.

However, a variance-based measure of uncertainty that is useful for precipitation, can be 
derived by scaling the total uncertainty (or modelling uncertainty) by natural variability.

This metric is monotonically related to R (see paper for details), so it’s pattern is identical 
to that of Figure 1. This provides a different, but complementary, view of the 

uncertainties in projected precipitation change.

• Figure 2 shows that uncertainties in global climate sensitivity

contribute little to uncertainties in modelling local 
precipitation change, except perhaps at high latitudes.

• Figure 3 shows that, for projected changes in local SSTs, 
modelling uncertainty is always the dominant driver of total 
uncertainty, and most strongly so in the tropics.

• Figure 4 shows how much of the SST variability is 
transferred to bidecadal variations in precipitation (during the

20th century).

5. First-Order Explanations4. Patterns of the Sources of Uncertainty


