AN ADAPTIVE PEDESTAL CONTROL ALGORITHM FOR THE NATIONAL WEATHER RADAR TESTBED PHASED ARRAY RADAR

David L. Priegnitz¹, S. M. Torres¹ and P. L. Heinselman²

¹CIMMS/The University of Oklahoma, ²NOAA/NSSL

Purpose of Developing Pedestal Control Algorithm

- NWRT PAR has a single array capable of electronically scanning a 90 degree sector
 - Field of view is +/- 45 degrees off broadside
- Operator must rotate the antenna to follow a weather feature
 - Tracking storms generally requires numerous antenna rotations; especially for storms close to the radar
 - Focus taken away from watching weather
 - Determine optimal antenna position
- Data quality
 - Data collection interrupted while operator repositions the antenna
 - The entire process generally requires a minimum of 30 seconds
 - Beam width increases away from broadside
 - 1.5 degrees at broadside
 - 2.1 degrees at +/- 45 degrees
- Demonstrate algorithm control capabilities for adaptive scanning
 - Improvements made to computing infrastructure (Torres et al, 2011)
 - Simplify process of adding new algorithms
 - Demonstrate full control thread

WXTRACK Algorithm

- Algorithm processes reflectivity data inside user defined box
 - Polar box defined by operator
 - Centroid of data inside box calculated
 - Threshold
 - Weighted

$$- W_i = (Z_i - Z_T)^2 + 1$$

- Box is repositioned after each scan
 - Centroid of first scan used as anchor
 - Position relative to center of box
 - Box sides adjusted so new centroid matches anchor position relative to box
- Antenna is rotated if box reaches scan window boundary
 - Field of View
 - Tolerance

Beam width	Tolerance
2.1	0.0
2.0	3.6
1.9	7.1
1.8	11.4
1.7	16.9
1.6	24.6

Repositioning the Antenna

If Br >= Wr the antenna is rotated clockwise so Bl = Wl+4
If Bl <= Wl the antenna is rotated counterclockwise so Br = Wr-4

Final Comments

- Algorithm performed well in most of the test cases
 - Best for isolated storms
 - Worse for small embedded storms using small box
 - Time between scans when moving pedestal < 6 seconds
- More testing to be done using different thresholds and tolerances
- 3D option being added to centroid calculation