Third Aviation, Range and Aerospace Meteorology Special Symposium on Weather-Air Traffic Management Integration

The Potential of 1.3GHz-Band Wind Profiler for Monitoring Atmospheric Turbulences on the Airways

Yusuke Kajiwara, Japan Meteorological Agency/MRI,

H. Hashiguchi, M. Yamamoto, K. Higashi, S. Kawamura, A. Adachi, K. Bessho, and M. Kurosu

Table of Contents

Introduction

- Turbulence in Japan

Wind profiler and Turbulence

- Performance of JMA's operational wind profiler
- Spectral width and turbulence

Result

- Agreement between spectral width and turbulence
- A new research project for better turbulence detection

Summary and Future plans

- The wider the spectral width in wind profilers, the stronger the turbulence in PIREP.

Introduction

Turbulence in Japan

Aviation Accidents in Japan, 2000-2009

"accidents"

"people seriously injured" "people slightly injured"

*From reports by Japan Transport Safety Board

Turbulence Observing Information

So far, information on turbulence is limited to **PIREP** (in Japan)

→ We need new techniques by remote sensing!

(e.g. the NEXRAD turbulence detection algorithm,

low-level EDR retrieved from wind profilers or LIDARs at Hong Kong)

Wind profiler and Turbulence

1.3GHz-Band Wind profilers in Japan

(WINDAS)

Operational Mode

Frequency 1357.5MHz

Antenna Gain 34dBi

Peak Power 1.8kW

Beam 5 (N, S, E, W, Zenith)

Pulse Length 2.0µs (+ 8bit Spano code)

PRF 10kHz

Resolution Height: 296m

Time: 1minute

10 minutes average

Height 9 km (maximum)

Coverage ~5 km (annual average)

Spectral width and Turbulence

- 1. Clear Air Echo: Scattering from refractive index irregularity (Bragg scattering)
- 2. Precipitation Echo: Scattering from precipitate particles (Rayleigh scattering)
- → In either case, scattering body is influenced from turbulence intensity.

Correction of Spectral width Broadening

Other factors of Spectral width broadening in 1.3GHz-Band

- •Beam Broadening → by finite radar beam width
- •Shear Broadening → by vertical shear in the scattering volume
- •Time Broadening → by velocity fluctuation in dwell time(ex. gravity wave)
- •Rain Broadening → by different fall velocity of raindrops

Main factor of JMA's wind profiler is

the beam broadening without raindrops.

Simple correction for beam broadening

$$\sigma_{cor} = \sqrt{\sigma_{obs}^2 - \left(\frac{1}{\sqrt{2}}\theta_{1/2}V_h\right)^2}$$

Hocking(1985)

 σ_{obs} : Observation Value(m/s) $\theta_{1/2}$: 1-way beam width(Full) V_h : Horizontal velocity(m/s)

•If the number in the root is minus, σ_{cor} is regarded as 0.0m/s.

An example of Correction

Time-Height Cross Section in Spectral width

Red: Wider

Blue: Narrower

Result

Comparing Wind profiler and PIREP data

Period	2008 Jan - 2010 Dec	
Altitude	surface - about 30,000ft	
Subject	WPR: Corrected spectral width (average value for 10 minutes, and we select maximum value in 9 data next to time and altitude.) PIREP: turbulence intensity reported from PIREP	
Exception	 WPR data which is likely to be influenced with the rain broadening (we regarded it as data which has less than -2.0m/s vertical velocity) PIREP data which quality is likely to be bad 	

Turbulence reported near wind profilers

(within 15km)

The number of PIREP data which we use

The wider the corrected spectral width, the stronger the reported turbulence!

Turbulence reported near wind profilers (within 15km)

The number of PIREP data which we use

- Even in case of moderate turbulence,
 30% PIREP were accompanied with no wind profiler data.
- The weaker the turbulence,
 the less the observed wind profiler data.

Good case (CAT 2010.11.9)

PIREP		
Name of near WPR	Shimizu	
Turbulence intensity	Moderate	
Distance	About 5 km to the north of WPR	
Altitude	25,000-26,000ft	
Time(LT)	17:39	
Aircraft Type	B737-800	

The value of the spectral width was over 3 m/s near the turbulence!

Data absent (CAT 2010.5.2)

PIREP			
Name of near WPR	Tottori		
Turbulence intensity	Moderate		
Distance	About 4 km to the west of WPR		
Altitude	29,000ft		
Time(LT)	15:57		
Aircraft Type	B767-300		

By radiosondes, it was very dry near 29,000ft of altitude.

→ We cannot get any information about turbulence due to weak echo.

A new research project for better turbulence detection

Development of high-sensitivity

1.3GHz wind profiler (by software)

Provision of JMA's wind profiler data

Provision of flight data

Why a Wind Profiler?

Three possibility for turbulence detection

- -Weather radar
- -LIDAR
- -Wind profiler

Wind profiler's Advantage

- Observable in any weather

Wind profiler's <u>Disadvantage</u>

- Horizontal distribution

Why a 1.3GHz-Band?

Three categories of radio frequency for wind profiler

- -50MHz
- -400MHz
- -around 1000MHz(900MHz,1.3GHz, and ...)

1.3GHz's Advantage

- 1. Lower cost
- 2. Smaller antenna size

1.3GHz's Disadvantage

- 1. Height coverage
- 2. Influence from raindrop

Able to overcome to some extent

Summary and Future Plans

--Summary--

Today, we have demonstrated the potential of 1.3GHz-Band wind profiler for monitoring turbulence:

- The wider the corrected spectral width, the stronger the reported turbulence.
- Spectral width can also detect turbulence which may not be related to vertical wind shear.
- But, we cannot get any information about turbulence in dry layers from the current wind profiler.

--Future Plan--

- Correction algorithm in rain region (now developing)
- Conversion to eddy(energy) dissipation rate
- Development of Next-generation(high sensitivity) wind profiler

Thank you very much for your attention!

Any Questions?

Acknowledgments: The present study was supported by the Program for Promoting Fundamental Transport Technology Research from the Japan Railway Construction, Transport and Technology Agency (JRTT).

Increase of the transmission power(& antenna gain)

(a) WPR 1

Peak Power 2.8kW

(b) WPR 2

Combine 2 small wind profiler

3.6m

Peak Power 5.2kW

13 antenna

Advanced signal processing

Application of Frequency-domain Interferometric Imaging(FII)

- use 5 radio frequency
 - e.g. f(1357.5MHz), $f\pm 250kHz$, $f\pm 500kHz$
- enable us to get very high resolution

- increase height coverage
- decrease height resolution

- increase height resolution

Good case (Cloud Top 2010.12.2)

Correction of rain broadening

Correction of Spectral width Broadening

Simple correction for beam broadening

$$\sigma_{cor} = \sqrt{\sigma_{obs}^2 - \left(\frac{1}{\sqrt{2}}\theta_{1/2}V_h\right)^2}$$
Hocking(1985)

 σ_{obs} : Observation Value(m/s)

 $\theta_{1/2}$: 1-way beam width(Full)

V_h: Horizontal velocity(m/s)

•If the number in the root is minus, σ_{cor} is regarded as 0.0m/s.