Absorption Spectral Variation to Illustrate Regional and Seasonal Asian Aerosol Variation

Tim Logan, Baike Xi, Xiquan Dong
University of North Dakota

Zhanqing Li and Maureen Cribb
University of Maryland

Wei Gong
LIESMARS – Wuhan University
Ongoing urbanization and industrialization in Asia contributes to many different aerosol types

- Adds to more uncertainty in global climate
 - Which aerosol type is dominant?
 - Which aerosol type has more effects on the global radiation budget?
- Different types of aerosols have been known to cause different types of health issues as well
 - Fine mode versus coarse mode aerosols
 - Secondary aerosols
Absorption Angstrom Exponent (α_{abs})

- Log–slope of AAOD or τ_{abs} (440–870nm)
- $\alpha_{abs} < 1$: pollution, aged aerosols, background aerosol type, and even instrument noise artifacts
- $\alpha_{abs} \sim 1$: submicron black carbon (BC)
- $1 < \alpha_{abs} < 2$: urban pollution
 - Weakly absorbing OC, sulfate and biomass aerosols
- $\alpha_{abs} > 2$: light absorbing organic carbon and mineral dust
Absorption spectral variation ($\delta \alpha_{\text{abs}}$)
- Slope of α_{abs} between 440 and 870 nm
- Separates strong absorbing from weak absorbing particle influences
- $\delta \alpha_{\text{abs}} > 0$ – strong absorbing pollution aerosols
- $\delta \alpha_{\text{abs}} < 0$ – weak absorbing pollution aerosols
- $\delta \alpha_{\text{abs}} \sim 0$ – complex mixtures
AERONET Sites

- Beijing
- Xianghe
- SACOL
- Taihu
• Majority of data points fall between α_{abs} of 1 and 2 – pollution range
• Positive $\delta \alpha_{\text{abs}}$ – strong absorbing particles (major contribution)
• Negative $\delta \alpha_{\text{abs}}$ – weak absorbing particles (minor contribution)
• Dust region – $\delta \alpha_{\text{abs}} > 0$, $\alpha_{\text{abs}} > 0$
Majority of extreme aerosol loading events are in summer at SACOL. Maximum t is more often during spring. Negative $\Delta \alpha_{abs}$ during summer (e.g. biomass). Heavy overlap due to many particles having similar α_{abs} values but not necessarily similar type.
Fine mode is correlated with large τ and $\delta\alpha_{\text{abs}} > 0$.

$\delta\alpha_{\text{abs}} < 0$ has primary contributions from fine mode and minor contribution from coarse mode.

SACOL has main contribution from coarse mode absorbing particles.
- $\delta \alpha_{abs} > 0$ associated with winter and spring months
- $\delta \alpha_{abs} < 0$ associated with summer and autumn months
- SACOL has largest variability of $\delta \alpha_{abs}$ in spring
- Beijing has largest variability overall
- Less overlap of overall aerosol variation with this method
Spectral Variation–Case Study

- Our previous study used $\delta \alpha$ to identify three types of aerosol plumes
 - Dust dominated mixture
 - Pollution dominated mixture
 - Pollution only
- We apply the $\alpha_{\text{abs}}/\delta \alpha_{\text{abs}}$ technique to the same cases and compare with backtrajectory analysis.
The \(\alpha_{abs}/\delta\alpha_{abs} \) plot shows large variability with \(\delta\alpha_{abs}>0 \) and \(\alpha_{abs}>2 \).

Small \(\alpha, \alpha_{abs}>2, \delta\alpha_{abs}\sim1, \) and \(\omega_0 \) of 0.94 denote strong mineral dust signature with some degree of chemical/physical interactions.

- \(\alpha_{abs}/\delta\alpha_{abs} \) plot shows majority of data points with \(\delta\alpha_{abs}>0; 1<\alpha_{abs}<2 \).
- **Large** \(\alpha, \alpha_{abs}\sim1.8, \delta\alpha_{abs}\sim0.6, \) and \(\omega_0 \) of 0.92 denote strong absorbing pollution signature.
$\alpha_{abs}/\delta\alpha_{abs}$ plots show data points with $\delta\alpha_{abs}>0$, $\delta\alpha_{abs}<0$ and variability of a_{abs} values.

- Large α, $\alpha_{abs} \sim 4$, $\delta\alpha_{abs} \sim 0.4$, and ω_o of 0.95 denote complex mixture of dust and pollution.
- Low $\delta\alpha_{abs}$ can also indicate large fraction of dust that has not reacted with pollution.
Summary

- $\delta\alpha_{\text{abs}}$ has the ability to show more variation in aerosol type and its subsequent contribution to overall AOD
- Can be used in conjunction with other parameters (α, α_{abs}, and $\delta\alpha$)
- Strong seasonal dependence on aerosol type
- Can be used to demonstrate chemical characteristics of aerosols
Future Work

- Develop an unsupervised aerosol classification scheme
- Utilize data from other platforms to test scheme
 - Aircraft and satellite data
 - Field Campaigns
- Determine correlation of aerosol type with adverse effects on human health
References

- The authors also wish to thank P.I.’s Brent Holben, Jianping Huang, Wu Zhang, Hong-Bin Chen, Philippe Goloub, Ma Ronghua, Pucai Wang, and Xiangao Xia for the AERONET data.
Thank You
Extra Slides
Case I – Dust Case

- $\alpha_{\text{abs}}/\delta \alpha_{\text{abs}}$ plot shows majority of data points with $\delta \alpha_{\text{abs}} > 0$ and $\alpha_{\text{abs}} > 2$
 - Chemical data with $[\text{Ca}^{++}] = 272$ pptv show moderate dust loading
 - 2 of 3 trajectory lines pass through the Gobi Desert
 - 1 line passes just east of Shanghai; cluster of data points in pollution region
 - Aerosol event passes through Xianghe and Shirahama AERONET sites
 - More mineral dust influence at Xianghe and northern Japan than at Shirahama site
 - Aerosol event reaches DC-8 in Eastern Remote Pacific
 - Small α, $\alpha_{\text{abs}} > 2$, $\delta \alpha_{\text{abs}} \sim 1$, and ω_0 of 0.94 denote strong mineral dust signature with some degree of chemical/physical interaction
Case II – Pollution Case

- $\alpha_{abs}/\delta\alpha_{abs}$ plot shows majority of data points with $\delta\alpha_{abs} > 0$ and $1 < \alpha_{abs} < 2$
 - Chemical data with $[Ca^{++}] = 111$ pptv show weak dust loading
 - All 3 trajectory lines pass through large urban centers of central Asia
 - Aerosol event passes through Xianghe and Shirahama
 - AOD is higher at both sites due to mineral dust (Shirahama) and mineral dust/pollution (Xianghe)
 - Trajectory line from Taklamakan desert passes directly over Shirahama but heavy deposition between source and DC-8 aircraft ($\delta\alpha << 0$) indicates a small volume of mineral dust reaches eastern Pacific.
 - Aerosol event reaches DC-8
 - Large α, $\alpha_{abs} \sim 1.8$, $\delta\alpha_{abs} \sim 0.6$, and ω_o of 0.92 denote strong absorbing pollution signature
Case III – Mixture (Dust Dominant)

Case IV – Mixture (Pollution Dominant)

- $\alpha_{abs}/\delta\alpha_{abs}$ plots show data points with $\delta\alpha_{abs}>0$, $\delta\alpha_{abs}<0$ and wide variability of α_{abs} values
 - Chemical data with $[Ca^{++}] = 843$ and 449 pptv, respectively show extreme dust loading
 - Trajectory lines pass through the Gobi and Taklamakan deserts as well as central/eastern Asia
 - Aerosol event passes through Xianghe and Shirahama
 - Pollution trajectory line passes over Shirahama
 - Dust trajectory line passes over Xianghe ($\alpha < 0$)
 - α_{abs} is the highest of all cases at Xianghe but lowest at Shirahama
 - Shows strong mixed nature of aerosol event
 - Aerosol event reaches DC-8
 - Large α, $\alpha_{abs} \sim 4$, $\delta\alpha_{abs} \sim 0.4$, and w_o of 0.95 denote complex mixture of dust and pollution
 - Low $\delta\alpha_{abs}$ can also indicate large fraction of dust that has not reacted with pollution