
Statistical downscaling models of meteorological variables for climate change impact studies. Temporal transferability ; uncertainties in future hydrological projections.

Matthieu Lafaysse^{1,3}, Benoit Hingray¹, Laurent Terray², Abdelkader Mezghani¹, Joël Gailhard⁴

AMS conference 26th january 2011

Typical methodology for impact studies

SDMs evaluations

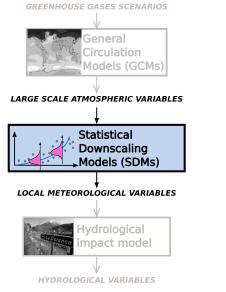
Model	Method	Predictors
ANALOG	Analogs resampling	Z ₇₀₀ , Z ₁₀₀₀
DSCLIM-10	Moother type	P _{SL}
DSCLIM-11	Weather tyes + regional indices	P_{SL}, T_a
DSCLIM-21		Z ₈₅₀ , Z ₅₀₀
D2GEN-10	Degracoione I	P _{SL} , u ₇₀₀ , v ₇₀₀
D2GEN-22	Regressions + stochastic generator	$P_{SL}, u_{700}, v_{700}, HU_{700}, q_{700}$
D2GEN-32		$P_{SL}, u_{700}, v_{700}, HU_{700}, F_{q_{700}}$

ANALOG [EDF/LTHE, Obled et al., 2002, Gailhard, 2009] DSCLIM [CERFACS, Boé et al., 2006, Pagé et al., 2011] D2GEN [LTHE, Mezghani and Hingray, 2009]

Outline

1 SDMs evaluations

- Climatological evaluation
- Chronological evaluation


- Dispersion of meteorolgical changes
- Significance of meteorological changes
- Hydrological impacts

Outline

1 SDMs evaluations

- Climatological evaluation
- Chronological evaluation

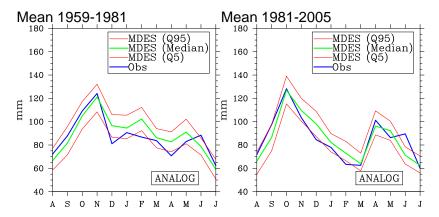
- Dispersion of meteorolgical changes
- Significance of meteorological changes
- Hydrological impacts

OBSERVATIONS (NCEP REANALYSIS)

Evaluation

100 SCENARIOS

Introduction

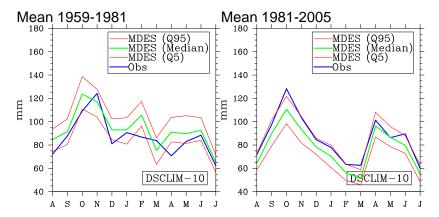

SDMs evaluations

Future projections

Conclusion

5/17

Seasonal cycle of Durance basin precipitation. (southern French Alps, 3580 km², Elevation : 700-4100m.)

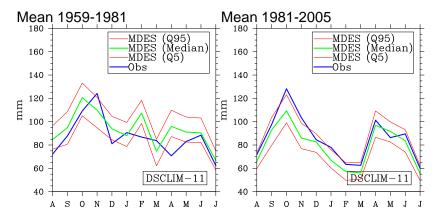


Introd	uction
000	

SDMs evaluations

Future projections

Seasonal cycle of Durance basin precipitation. (southern French Alps, 3580 km², Elevation : 700-4100m.)

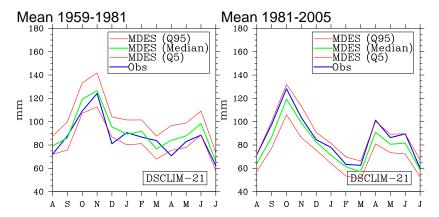


Introduction	
000	

SDMs evaluations

Future projections

Seasonal cycle of Durance basin precipitation. (southern French Alps, 3580 km², Elevation : 700-4100m.)

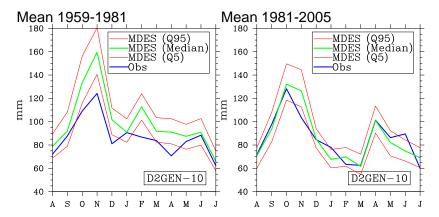


Introduction	
000	

SDMs evaluations

Future projections

Seasonal cycle of Durance basin precipitation. (southern French Alps, 3580 km², Elevation : 700-4100m.)

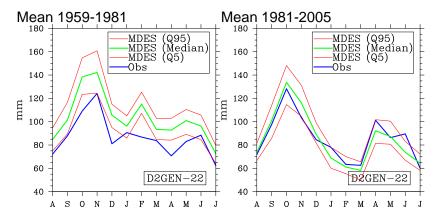


Introduction	
000	

SDMs evaluations

Future projections

Seasonal cycle of Durance basin precipitation. (southern French Alps, 3580 km², Elevation : 700-4100m.)

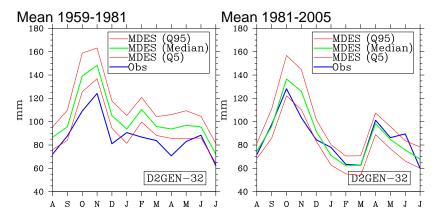


Introd	uction
000	

SDMs evaluations

Future projections

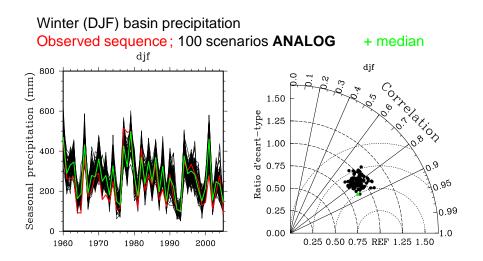
Seasonal cycle of Durance basin precipitation. (southern French Alps, 3580 km², Elevation : 700-4100m.)



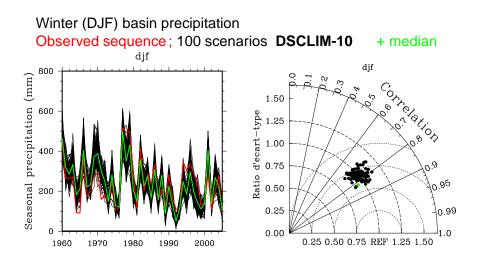
Introduction	
000	

SDMs evaluations

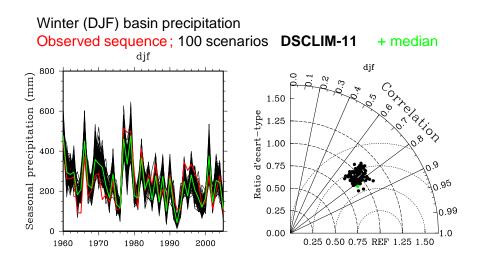
Future projections


Seasonal cycle of Durance basin precipitation. (southern French Alps, 3580 km², Elevation : 700-4100m.)

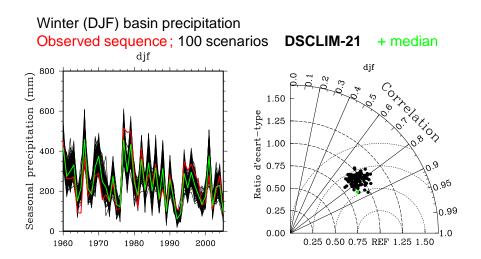
Introd	uction
000	


SDMs evaluations

Future projections

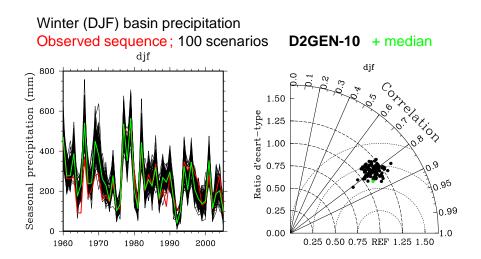

00

Future projections


00

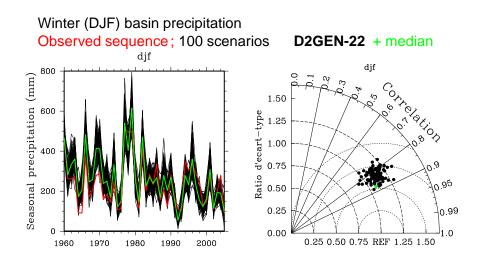
Future projections

00


Future projections

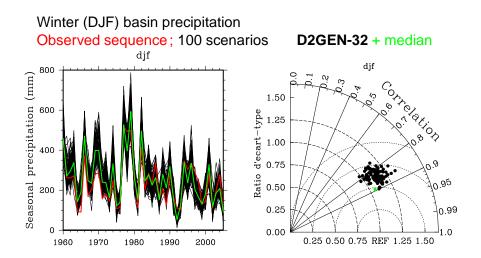
Introd	uction

00


Future projections

Introd	uction

00

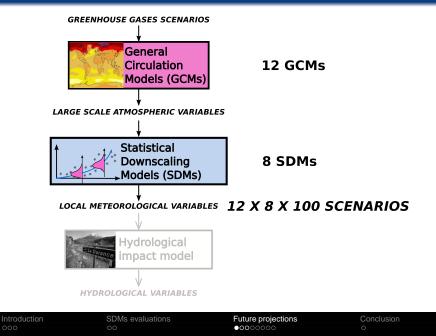

Future projections

SDMs evaluations

00

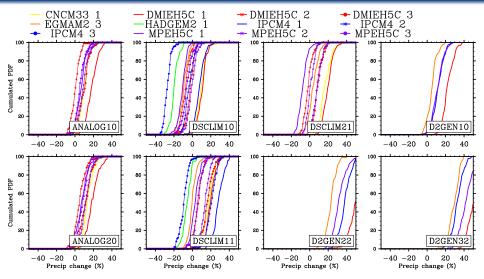
Future projections

Intro	duct	ion


00

Future projections

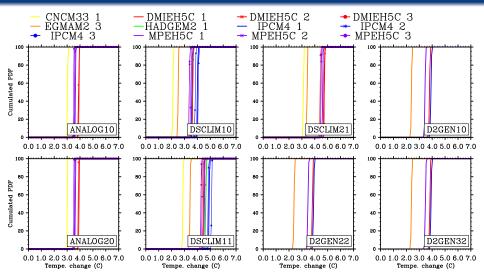
- Climatological evaluation
- Chronological evaluation


- Dispersion of meteorolgical changes
- Significance of meteorological changes
- Hydrological impacts

Future projections (Durance basin)

9/17

Winter precipitation changes (Durance basin)

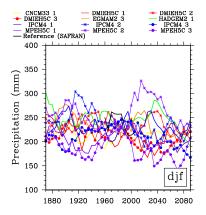


1 line = Distribution of changes among 100 scenarios for 1 GCM and 1 SDM Changes

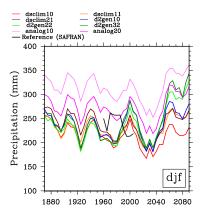
between 2080-2099 and 1980-1999

Introduction	SDMs evaluations	Future projections	Conclusion	10/17
		000000		

Annual temperature changes (Durance basin)


1 line = Distribution of changes among 100 scenarios for 1 GCM and 1 SDM Changes

between 2080-2099 and 1980-1999


Introduction	SDMs evaluations	Future projections	Conclusion	11/17
		000000		

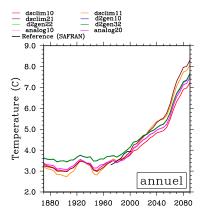
Winter precipitation evolution (Durance basin)

12 GCM + 1 SDM (DSCLIM-10)

1 GCM (DMIEH5C-1) + 8 SDM

Introd	uction
000	

SDMs evaluations

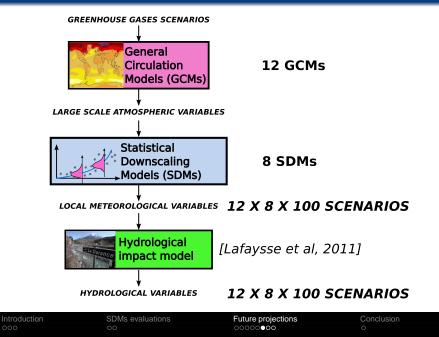

Future projections

Annual temperature evolution (Durance basin)

12 GCM + 1 SDM (DSCLIM-10)

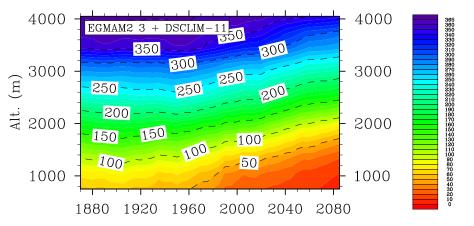
CNCM33 1 DMIEH5C 1 DMIEH5C 2 EH5C 3 GMAM2 3 HADGEM2 IPCM4 2 IPCM4 3 IPCM4 1 MPEH5C 1 MPEH5C 2 - Reference (SAFRAN) 8.0 7.0 Temperature (C) 6.0 5.0 4.0 3.0 annuel 2.0 1880 1960 2000 2040 2080 1920

1 GCM (DMIEH5C-1) + 8 SDM



Introduction

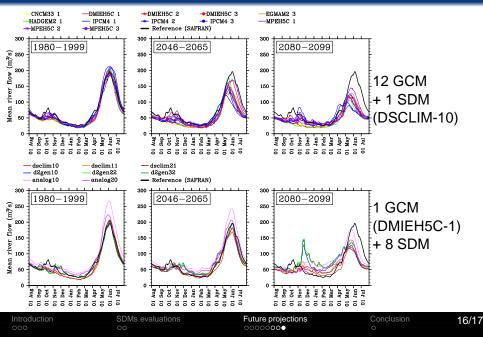
SDMs evaluations


Future projections

Future projections (Durance basin)

14/17

Snow cover duration (days/year, Durance basin)



Introduction

SDMs evaluations

Future projections

Seasonal cycle of river discharges (Durance basin)

Conclusion

Evaluations

- Transferability : data heterogeneities problem
- Chronological evaluation : similar results between SDMs

Projections

- Simulated changes are strongly model-dependant (GCMs + SDMs) and predictors-dependant
- High dispersion of results
- Robust hydrological signal due to snow cover decrease

Recommandation

Do account for downscaling-related uncertainty! As important as GCMs uncertainty!

Conclusion

Evaluations

- Transferability : data heterogeneities problem
- Chronological evaluation : similar results between SDMs

Projections

- Simulated changes are strongly model-dependant (GCMs + SDMs) and predictors-dependant
- High dispersion of results
- Robust hydrological signal due to snow cover decrease

Recommandation

Do account for downscaling-related uncertainty! As important as GCMs uncertainty!

Conclusion

Evaluations

- Transferability : data heterogeneities problem
- Chronological evaluation : similar results between SDMs

Projections

- Simulated changes are strongly model-dependant (GCMs + SDMs) and predictors-dependant
- High dispersion of results
- Robust hydrological signal due to snow cover decrease

Recommandation

Do account for downscaling-related uncertainty! As important as GCMs uncertainty!

Thanks for attention

Photo : Eric Jabot

- J. Boé, L. Terray, F. Habets, and E. Martin. A simple statistical downscaling scheme based on weather types and conditional resampling. *J. Geophys. Res.*, 111, 2006.
- J. Gailhard. Communication personnelle, EDF/DTG, 2009.
- M. Lafaysse, B. Hingray, P. Etchevers, E. Martin, and C. Obled. Influence of spatial discretization, underground water storage and glacier melt on a physically-based hydrological model of the Upper Durance River basin. *J. Hydrol.*, 403(1-2) : 116–129, JUN 6 2011. ISSN 0022-1694. doi : {10.1016/j.jhydrol.2011.03.046}.
- A. Mezghani and B. Hingray. A combined downscaling-disaggregation weather generator for stochastic generation of multisite hourly weather variables over complex terrain : Development and multi-scale validation for the Upper Rhone River basin. J. Hydrol., 377(3-4) :245–260, OCT 30 2009. ISSN 0022-1694. doi : {10.1016/j.jhydrol.2009.08.033}.
- C. Obled, G. Bontron, and R. Garcon. Quantitative precipitation forecasts : a statistical adaptation of model outputs through an analogues sorting approach. *Atmos. Res.*, 63(3-4) :303–324, AUG 2002. ISSN 0169-8095.
- C. Pagé, E. Sanchez-Gomez, and L. Terray. DSCLIM : A software to provide climate projections using a weather typing based statistical downscaling methodology. *submitted to Environmental Modelling & Software*, 2011.