

Airborne in-situ and lidar observations of volcanic ash during the 2010 eruption of Eyjafjallajökull

Ben Johnson¹, Franco Marenco¹, Kate Turnbull¹, Phil Brown¹, Rachel Burgess², James Dorsey², Anthony J. Baran¹, Helen Webster¹, Jim Haywood¹, Richard Cotton¹, Z. Ulanowski³, Evelyn Hesse³, Alan Woolley⁴, and Philip Rosenberg⁴

¹Met Office, UK

²University of Manchester, UK

³University of Hertfordshire, UK

⁴Facility for Airborne Atmospheric Measurement, UK

Met Office

FAAM BAe146 aircraft & key instruments for ash measurement

LIDAR (355nm)

FAAM aircraft flights

Met Office

• 12 flights on 9 days

Objectives:

- Operational guidance on ash (VAAC)
- Validation of ash dispersion models (NÅME)
- Scientific investigation of ash clouds (microphysical & chemical properties)

Aerosol size distribution and ash mass concentration

Ash mass concentration derived from CAS has a factor of 2 uncertainty due to uncertainties in the above assumptions and instrument performance.

Specific extinction coefficient (K_{ext}): Results shown for 550nm

 Aerosol scattering coefficient from nephelometer well correlated with ash mass

 $K_{ext} = extinction / mass$

(extinction = scattering + absorption)

Airborne LIDAR

- Leosphere elastic backscatter 355nm lidar with depolarization.
- Retrievals of aerosol extinction (σ_{ext}) and lidar ratio (~60) retrieved via near and far field rayleigh scattering constraints
- Extinction converted to ash mass concentration via:

$$M = f_c \sigma_{ext} / K_{ext}$$

 f_c = coarse-mode extinction fraction. Flight mean values:

 $K_{ext} 0.62 - 0.92 \text{ m}^2/\text{g}$ $f_c 0.52 - 0.97$

LIDAR retrieved mass concentration on 6 flights

Vertical profiles through ash clouds

- Good correspondence between CAS and Lidar-retrieved ash mass concentration
- Correlation of ash mass with SO₂ and nephelometer aerosol scattering.
- Light scattering by ash invariant with wavelength $(\mathring{A}_{450-700nm} \sim 0)$

Validation of ash dispersion forecasts (NAME) with Lidar

- Columnar peak ash concentration between 0

 6 km from NAME for 12
 18 UTC and from lidar observations.
- Errors in timing and position of plumes
- Predicted magnitudes are in same range as observations.

NAME validation for 14th May case

CAS ash mass concentration (µg/m³)

NAME forecast peak concentration, 0-6km, 12 – 18 UTC

SEVIRI RGB dust image for 12UTC

© Crown copyright Met Office

- Large dataset of ash concentration observations from airborne lidar and in-situ measurements, available on request (ben.johnson@metoffice.gov.uk)
- NAME dispersion model did a reasonable job of forecasting ash clouds affecting UK region
- Downwind ash from this eruption:
- mass dominated by diameters 1 10µm
- K_{ext} at UV visible wavelengths ~0.6 m²/g

(implications for modelling and remote sensing)

"The Eyjafjallajokull Volcanic Eruption in 2010" JGR - Special issue (to be published later this year) Atmospheric papers:

Met Office

S

Ň

 (\mathbf{I})

Ô

 \bigcirc

atellite

S

- 1) In-situ observations of volcanic ash clouds from the FAAM aircraft during the eruption of Eyjafjallajökull in 2010. B. Johnson. et al.
- ation 2) A case study of observations of volcanic ash from the Eyjafjallajökull eruption, part 1: in situ airborne observations. K. Turnbull et al..
 - 3) A case study of observations of volcanic ash from the Eyjafjallajökull eruption. Part 2: airborne and satellite radiative measurements. S. Newman et al.
 - 4) Determining the contribution of volcanic ash and boundary-layer aerosol in backscatter lidar returns: A three-component atmosphere approach. Marenco, F., and R. J. Hogan
- S 5) Airborne lidar observations of the 2010 Eyjafjallajokull volcanic ash plume. F. Marenco et al.
 - 6) A new application of a multi-frequency submillimetre radiometer in determining the microphysical and macrophysical properties of volcanic plumes: A sensitivity study. A. J. Baran
 - 7) Charge mechanism of volcanic lightning revealed during the 2010 eruption of Eyjafjallajokull. *P Arason et al.*

 - 14) Simulated SEVIRI volcanic ash imagery. S. C. Millington et al.
 - 15) Retrieval of physical properties of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajökull eruption. P. N. Francis et al.
 - 16) Satellite Remote Sensing Analysis of the 2010 Eyjafjallajokull Volcanic Ash Cloud over the North Sea during May 4-
 - May 18, 2010. S. Christopher
 - 17) Eviafiallajokull volcanic ash concentrations determined from SEVIRI measurements. A. J. Prata and A. T. Prata

© Crown copyright Met Office

NAME vs observations: 14th May 2010 12:00

SEVIRI satellite image

Ash

NAME: default case

10 micron diameter

30 micron diameter

© Crown copyright Met Office

14th May: column loading

SEVIRI satellite retrieval

- Estimate near-source fallout from ratio of local maxima of column loading
- NAME: 55 gm⁻²
- Satellite retrieval: 6 gm⁻²
- Aircraft lidar: 1.2 gm⁻²
- Aircraft CAS (optical particle counter):7 gm⁻²
- Near-source fallout: 89.1% 97.8%

LIDAR-derived ash column loading

 Good correspondence between lidar-derived ash column loading and peach / luminous orange on SEVIRI dust RGB images.

LIDAR column load from 6 flights, overlaid on dust RGB images derived from SEVIRI

Met Office Civil Contingency Aircraft (MOCCA) - Cessna 421C

AIMMS probe (basic meteorological parameters)

CAPS probe, aerosol and cloud measurements

© Crown copyright Met Office

LIDAR (355nm), remote sensing aerosol and cloud layers Nephelometer (aerosol) & SO₂ analyser

Met Office Derivation of ash mass Concentration (M_{ash})

$$M_{ash} = \frac{4}{3} \pi \rho_{ash} \sum_{i=2}^{26} N_i \left(\frac{d_{v,i}}{2}\right)^3$$

 $d_v =$ volume-equivalent diameter

N = aerosol number concentration

i = size bins of CAS instrument; ash observed in bins 2 - 26

 $\rho_{ash} = 2300 \text{ kg/m}^3$

• **M**_{ash} has a factor of 2 uncertainty due to uncertainties in particle composition, shape, density and instrument performance (optics, electronics).