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“Recipe for Disaster: The Formula That Killed Wall Street” 

 
 

Felix Salmon  (Wired Magazine: 23 Feb. 2009): 
 

 
 

 

 Gaussian copula 
 
-- Statistical model for joint dependence 

Marginal distributions are transformed to Gaussian (or uniform) 

 
-- Proved inadequate for financial applications 

 What about for climate extremes? 
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(1) Background / Motivation 

 
 
 

 Heat waves 
 

-- Meteorological phenomenon 
  
 Extreme event 

 Persistent (e. g., associated with blocking) 

 

-- Statistical perspective 
 
 Extreme Value Theory 

 Concept of Extremal Index  

 Measure of clustering at high levels 



(2) Extremal Index for Clustering at High Levels

 
 

 Extreme Value Theory (EVT) 
 

-- Consider sequence of observations {X1, X2, . . . } 

 Assumed independent (for now) and identically distributed (IID) 

 

-- Extremal Types Theorem for max {X1, X2, . . ., Xn } 

 
Approximate generalized extreme value (GEV) dist. for large n 

 

-- Analogue for excess over high threshold Xt – u, given Xt > u 

  
 Approximate generalized Pareto (GP) dist. for high threshold u 



 EVT under temporal dependence 
 

-- Consider stationary process {X1, X2, . . . } 

 That is, possibly temporally dependent 

 
-- Weak memory (Observations far apart in time) 

 EVT still holds if dependence weakens at fast enough rate 

 
-- Clustering at high levels (Observations close together in time) 

 
EVT still holds with adjustment to normalizing constants 

 

 Consider cluster (or hot spell):     Xt+1 > u, . . ., Xt+k > u 

Starts at time t + 1, length k days (k ≥ 1), where u is high 

threshold 



 



 



 Condition for no clustering at high levels 
 

   Pr{Xt+k > u │ Xt  > u} → 0  as u → ∞,  k = 1, 2, . . . 

  

 Clustering at high levels (Extremal Index θ, 0 ≤ θ ≤ 1) 

  
 (i) θ = 1 

No clustering at high levels (Independent or Gaussian process) 
  
 (ii) 0 ≤ θ < 1 

 Clustering at high levels 

  
 Interpretations: (i) Mean Cluster Length ≈ 1 / θ 
 
      (ii) Effective sample size (proportion) 



 Estimating Extremal Index 
 
(i) Intervals Estimator  (Ferro-Segers 2003)  
  
 Does not require identification of clusters 
 

Consider “interexceedance times” between exceedances of 

threshold 

 

Coefficient of variation of these interexceeance times converges 

to simple function of Extremal Index θ 

 
Resample (Bootstrap) interexceedance times to obtain confidence 

interval for Extremal Index θ



(ii) Runs  

  
 Approach typically used in “declustering” 
  
 Runs parameter r = 1, 2, . . . 
 

r = 1 corresponds to defining clusters as run of consecutive 

exceedances of threshold 

 

r = 2 corresponds to terminating a cluster if two or more 

consecutive days fall below threshold 

 

Identify clusters based on some value of r 
 
Then estimate θ by: 1 / (Mean Cluster Length) 



 Artificial example (Running maxima of order two) 
 

  Yk = max {Xk, Xk+1}, k = 1, 2, . . ., {X1, X2, . . . } IID 

 

 Then extremal index θ = 0.5 for {Yk} time series 

 

 



  
Running maxima of order two 



(3) First-Order Gaussian Process

 
 
 

 AR(1) Process (zero mean, unit variance)  
 

  Xt = φ Xt–1 + εt , εt ~ N(0, 1 – φ
2
) 

  

-- Autocorrelation function  

   Corr(Xt , Xt+k) = φ
k
,  k = 1, 2, . . . 

 

-- Joint distribution 

 {Xt , Xt+k} ~ Bivariate normal with correlation coefficient ρ = φ
k 

 

-- Straightforward to show that Extremal Index θ = 1 



 

Bivariate Normal Distribution:  Pr{Xt+k > u │ Xt  > u} 



 

AR(1) Process:  φ = 0.25



 

AR(1) Process:  φ = 0.75



(4) Application to Daily Maximum Temperature 

 
 
 

 Estimate Extremal Index θ by two different methods 
 

(i) Intervals Estimator of θ 
 
-- Vary threshold u 

-- Attach confidence interval based on bootstrap 

 

(i) Runs Estimator of θ  
 
-- Runs parameter r = 1, 2, 3, 4, 5 

-- Vary threshold u 



 



 

Fort Collins July precipitation 



(5) Discussion

 
 

 Dilemma 

 
(i) Financial statistics 
 

Strong evidence that Gaussian copula is inappropriate model for 

simultaneous occurrence of extremes 

  
(ii) Climate statistics 
 

Gaussian models are useful -- Should not be viewed as if produce 

no dependence of extremes 

 
But do Gaussian models treat joint dependence of extremes 

realistically enough? 


