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1 Introduction 
1Radar implementations began as fully analog 

systems. Digital technologies have held 
substantial roles for many years, but until the last 
two decades the major digital functionality largely 
began at the analog to digital and digital to analog 
conversions that occurred at baseband. Signal 
down- and up-conversion, as well as specialized 
pulse shaping, were performed with discrete 
hardware modules. As analog converters became 
capable of operating at IF sample rates, it became 
possible to migrate the IF processing into the 
digital realm. Typically this was performed by 
custom circuit boards designed around specialized 
components coupled with onboard digital signal 
processors. This hardware and embedded 
software solution then performed the up- and 
down-conversion and other signal processing 
functions, and allowed the communication with the 
host computer to occur at baseband sample rates.  

In the past decade, new capabilities have 
emerged in the digital arena, due to the increased 
capabilities of the Field Programmable Gate Array 
(FPGA). This device provides a foundation for 
building general-purpose hardware that can be 
adapted to the signal processing needs of many 
types of radar (or other) systems. Because the 
FPGA is a re-configurable, generic, and high-
performance computing device, it can serve as the 
central component in a general-purpose control 
and signal processor subsystem. Indeed, there are 
now commercial transceivers available that can be 
utilized in just this manner. Radar system 
designers can configure a purchased transceiver 
card, rather than having to develop complex and 
specialized hardware. 

The purpose of this paper is to summarize one 
such project, and provide guidance for those who 
are exploring the idea of developing similar 
capabilities. A brief introduction to the FPGA is 
given first, followed by a description of the 
processor architecture. Examples of some diverse 
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applications of this system are presented, followed 
by a discussion of benefits and pitfalls. 

2 The Field Programmable Gate Array 

The FPGA is simply an integrated circuit with 
an extremely large number of generic digital logic 
cells. These cells can be dynamically connected to 
create building blocks capable of basic digital 
functions. These components are then combined 
to produce more sophisticated logic, and so on 
until very complex functionality is realized. For 
example, devices with the complexity of complete 
CPUs, DMA memory controllers, and PCI bus 
interface controllers can be synthesized for 
modern FPGAs. In fact a single FPGA will often be 
performing all of these functions and more at 
once. The FPGA is also well suited to 
implementing pipelined computations that can be 
highly parallelized, such as filtering, frequency 
conversion, and the fast Fourier transform. These 
allow us to implement much of the functionality, 
originally located in analog or discrete digital 
components, in the re-configurable digital 
environment of the FPGA. 

The FPGA device will have digital I/O 
connections for bringing signals into and out of the 
chip. The number of digital I/O lines can number in 
the hundreds for the larger devices. Processing 
within the FPGA is driven by numerous clock 
signals, which gate the digital data through the 
configured cells. Clock management is one of the 
more challenging aspects of firmware design, 
when dealing with mixed frequency applications. 
This is common for designs that are connecting 
signals that are derived from IF rates to computer 
buses, memories, etc. Fortunately the FPGA 
development tools provide capabilities for correctly 
managing the intersection of clock domains. 

3 The FPGA Workflow 

The FPGA configuration is commonly 
specified with a hardware specification language 
such as the VHSIC Hardware Description 
Language (VHDL). A sample of VHDL code is 
presented in Figure 1. The developer creates text 
descriptions that define the connections and 
operations of entities such as signals, registers, 
and busses. Basic logic and numeric operations, 
for example latching, addition and shifting, are 
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defined in the language. Sophisticated 
computational components are constructed from 
these building blocks. These components are then 
“wired” together to implement a complete control 
and signal processing system.  

The complete FPGA configuration will be 
defined in a collection of VHDL text files that can 
be modified using any source code text editor. 
However, the editing activity is usually performed 
within an integrated development environment. 
The Xilinx Integrated System Environment (ISE) is 
a very well known development package. It 
provides an integrated collection of tools that 
manage the complete FPGA workflow. The typical 
sequence of development is as follows: 

• Edit the VHDL file(s) 
• Test via simulation 
• Synthesize a bitstream 
• Download the bitstream to the FPGA 
• Test and debug 
• Return to editing 

Some of these steps can be quite lengthy, and 
so one cycle through the workflow can be very 
time consuming. 

Simulation is essential to efficient FPGA 
development. A test vector of simulated inputs are 
created and wired to the component, and the clock 
input is driven in order to run the simulation. The 
outputs are verified for correct behavior. Higher-
level modules comprised of multiple components 
are simulated and tested in the same manner. 
Tools for facilitating simulation are provided by the 
development environment.  The simulations are 
accurate enough that in general if the VHDL 
simulates properly, and the synthesis step is free 
of errors, the generated firmware will execute 

properly on the FPGA. Crafting and successfully 
passing simulation test benches are critical to 
creating reliable FPGA firmware designs. 

The synthesis step is where the VHDL 
description is converted into a specification for the 
digital cell connections on the FPGA. There are 
several sub-steps in this process. First the 
language description is translated into a network 
of logical register specifications. The register 
specification is then mapped onto the basic 
component types available on the particular FPGA 
being used. Finally, this logical network must be 
assigned to the actual logic cells within the 
physical FPGA. This last activity is known as 
“place and route”, and it is a significant 
computational challenge. The place and route task 
is both combinatorial and heuristic, and there is no 
guarantee that the tool will be able to reach a 
solution that will meet the timing constraints of the 
design. The development tools provide facilities 
that allow the human to provide some guidance, 
such as suggesting logical locations to place major 
components of the design. The place and route 
algorithm is iterative, as the software attempts to 
converge on a solution that meets the timing 
requirements. It is not uncommon for the place 
and route task to require 12 hours or more on a 
capable workstation. For this project, place and 
route runs in about 20 minutes. 

The synthesis part of the workflow can cause 
the FPGA workflow to be tedious. This is another 
reason why simulation can greatly enhance the 
development cycle. 

The product of synthesis is the “bitstream”, 
which is the lowest level specification of the FPGA 
connections. The bitstream must now be made 
available to the FPGA. It can be downloaded 
directly to the FPGA, but it is more common to 
“burn” it into a non-volatile memory such as an 
EEPROM, which will later be loaded into the 
volatile FPGA. In either case, the download can be 
performed via a JTAG interface, which provides a 
direct hardware connection to the FPGA device. If 
the FPGA is part of a card located on a host 
computer’s backplane, there will often be a 
mechanism for loading the FPGA directly across 
the host bus. This eliminates the need for 
specialized hardware to support the JTAG 
capability. In some cases only the volatile FPGA 
load can be performed via the host backplane, and 
the JTAG capability is still required for 
programming the non-volatile storage. 

Once the FPGA has been configured with the 
bitstream, system testing and debugging can be 
performed. If FPGA problems are detected, 
debugging can be initiated. Usually this must be 

--! Determine if we are on the even or odd pulse  
--! by counting the gates. 
even_odd: process (CLK, RST, g, even) 
    begin 
        if (RST = '1') then 
            even <= '1'; 
            g <= std_logic_vector(conv_signed(0, 16));
  
        elsif (rising_edge(CLK)) then 
            if (VALID_IN = '1') then 
                if (g = GATES-1) then 
                    even <= not even; 
                    g <= std_logic_vector(conv_signed(0, 
16)); 
                else 
                    g <= g + 1; 
                end if; 
            end if; 

Figure 1. Example VHDL source code. 
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done indirectly, such as by altering the system 
configuration in order to expose and diagnose the 
FPGA behavior. Xilinx also provides a very 
powerful method (ChipScope) for inserting 
firmware probes into the VHDL code so that the 
logic behavior can be tracked directly within the 
operating FPGA. 

Another powerful technique exists for creating 
firmware components. A processing algorithm can 
be written in a high-level language, such as 
Matlab. This code is then compiled to produce a 
firmware component that can be integrated with 
the VHDL code. Matlab provides a complete 
toolbox for crafting signal processing elements 
such as filters, fast Fourier transforms, etc. The full 
functionality of Matlab is available to investigate 
and characterize the performance of these 
components. 

4 Transceiver Cards 

The FPGA provides the computational 
foundation for a radar controller and signal 
processor, but it must be integrated with other 
hardware. A transceiver card is required which can 
provide receive, transmit and control signal 
functions. Commercial vendors provide products 
that provide this general-purpose functionality. The 
FPGA is typically combined with analog-to-digital 
and digital-to-analog converters, local memory, 
digital I/O lines and bus interfaces. The Pentek 
Model 7142 (Figure 2) was employed for this 
project.  As is common with these products, this 
compact card is based on the Portable Mezzanine 
Card (PMC) format. A wide variety of carrier cards 
are available to host the PMC in common 
computer backplanes.  

The hardware vendor typically offers a board 
support package, which provides drivers and 
application libraries for the host system, and 
firmware source code for the FPGA. The first two 
provide facilities to access the card on various 
operating systems. The firmware package can be 
a version of VHDL code that will run on the FPGA 
and provide baseline functionality, so that the card 
can be used in some cases without any VHDL 
development. The end user can customize the 
supplied VHDL for their specific purposes.  
It should be noted that the quality of the firmware 
package will have a significant impact on the 
success of the development. It should be logically 
organized and well documented, both in the VHDL 
files and with other documents. Schematic type 
drawings are invaluable. Ideally it will come with a 
complete project specification for a development 
environment such as ISE. The best packages will 

contain explicit user blocks embedded in the data 
flow, to facilitate insertion of custom processing. 
The board support for the Pentek card was found 
to be top notch in this regard.  

5 Radar Implementations 

High-level diagrams  depicting radar systems 
both with and without an FPGA based transceiver 
card are shown in Figure 3. The transceiver card 
replaces a large number of discrete components. 
This consolidation has several benefits. The 
design, construction and testing of some 
expensive analog sections are completely 
eliminated. Because the frequency conversion and 
filtering occur in the digital domain, the processing 
responses are completely matched and 
characterized without any measurement 
procedures. Most important though, is that all of 
these functions can be tailored for specific 
applications, with no additional hardware 
modification. 

 

6 The Software-Defined Digital Down 
Converter (SD3C) 

The SD3C is a framework that implements the 
radar signal processing and control functions. It is 
built on: (a) firmware operating on a Pentek 7142 
transceiver card, and (b) software support libraries 
for the host computer system. These two 
subsystems interact via the computer bus that the 
card is attached to. 

 
Figure 2. The Pentek 7142 FPGA transceiver. 
The FPGA integrated circuit is enclosed within 
the heat sink. 
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The SD3C implementation is described here in 
terms of the Pentek card that it currently runs on, 
but it should be noted that a very similar 
architecture could be realized using many of the 
commercially available transceiver cards available. 
Much of the firmware could be reused with other 
vendor hardware.  

6.1 SD3C Firmware 

Figure 4 presents a high level diagram of the 
SD3C signal-processing pipeline. 

The SD3C firmware builds upon the Pentek 
“GateFlow” infrastructure. GateFlow provides a 
reference firmware design that is capable of 
running the transceiver card with basic A/D 
sampling, D/A output and digital I/O. The Pentek 
card is quite sophisticated, providing flexible 
capabilities for onboard memory capture, data 
routing and device configuration. 

GateFlow provides specific “user blocks” that 
intercept the data flow through the FPGA, and into 
which the user can insert custom processing. The 
user blocks meet some but not all of the SD3C 
needs. The down conversion, matched filtering, 
pulse tagging, coherent integration and 
complimentary code processing are implemented 
in VHDL components that are instantiated in the 
user blocks. 

GateFlow is oriented towards communications 
processing, and therefore does not inherently 
provide the functions needed for pulsed systems. 
This required other areas of GateFlow to be 
modified so that the down-converted data signals 
could be sampled on the pulse repetition 
frequency (PRF) boundaries. Similarly, the 
transmit pulse is generated by feeding baseband 
values to the up-converter, and GateFlow was 
modified to also allow this to be synchronized with 
the PRF.  

Figure 2. Schematics of a radar system with and without an FPGA transceiver. The yellow boxes denote 
functions that are performed by the FPGA firmware. 
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A programmable VHDL timer component was 
created in order to generate timing signals. 
Multiple copies of the timer are instantiated for the 
required timing signals, such as the PRF, blanker, 
and amplifier power control. These signals can be 
used within the FPGA to gate the signal 
processing, and they are routed to the FPGA I/O 
pins, where they can be brought off board for 
connection to other hardware. The current design 
provides eight independent timers. If additional 
signals are required, it is a simple matter to 
instantiate additional timers. 

Many of the custom functions within the SD3C 
are configurable. Typical parameters include filter 
coefficients, timer periods, integration intervals, 
etc. GateFlow has a control register module that 
allows host software to write and read 
configuration registers for the existing GateFlow 
functions. This module was extended to allow the 
same configuration for SD3C functions.  

Table 1 summarizes the SD3C custom VHDL 
functions that are incorporated into the GateFlow 
foundation. 

 
Block Function 
Timer Implements a gang of timers for 

timing signal generation. All timers 
are started by a common pulse, but 
are free running after that. 

Control Provides the interface for reading 

and writing SD3C configuration and 
control registers. 

Down 
Converter 

Combines an fs/n down converter, a 
Kaiser filter and a Gaussian filter. 

Pulse 
Tagging 

Prepends an incrementing PRF 
pulse number, I/Q identifier, format 
identifier, and channel number to 
each received pulse. 

Coherent 
Integration 

Sums the samples for each range 
gate, for I and Q, for each channel. 
If complimentary coding is enabled, 
the sums are further segregated by 
even and odd pulse. 

Table 1. SD3C VHDL components. 

6.2 SD3C Host Software 

The transceiver card and its firmware provide 
the hardware component for the SD3C. A software 
infrastructure implements a high level capability for 
the host computer to interact with the card.  

As is common with most commercial 
transceiver cards, the vendor markets a low-level 
software interface that controls the basic card 
functions. In this case, Pentek provides the 
“ReadyFlow” package to support the P7142. 
ReadyFlow allows the user to configure and 
capture data from direct memory access (DMA) 
bus transfers, and to configure other functions in 
the FPGA.  

Figure 3. The SD3C firmware architecture 
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The SD3C package builds upon ReadyFlow to 
create a programming interface that represents 
the characteristics of a radar processor, and 
manages the custom capabilities of the SD3C 
firmware. This takes the form of a C++ class 
library, whose class hierarchy is shown in Figure 
5. The functions of the primary classes are 
described in Table 2. These three classes are all 
that is required in order to operate the transceiver 
as a radar system. The typical program sequence 
is as follows: 

• Create a p7142sdc3 object, representing a 
Pentek P7142 card. 

• Create a p7142Up up-converter object, for 
configuring the transmit pulse generation. 

• Create p7142sd3cDn down-converter objects, 
one per channel. 

• Configure the timers on the p7142sdc3. 
• Issue a start command to the p7142sdc3. 
• Loop on read() calls to each of the 

p7142sd3cDn objects, ingesting the baseband 
received data.  
 
Because the SD3C prepends identifying tags 

to each received pulse, the p7142sd3cDn class is 
able to detect if data are dropped during the DMA 
transfer between the transceiver and the host 
system. This can become an issue on a heavily 
loaded host with a large data bandwidth. The tags 
also allow accurate time stamps to be applied to 
the pulses, which would otherwise be ambiguous 
due to data transmission lags through the system. 

Using the SD3C C++ class library, a complete 
radar system can be developed. A typical host 
software architecture is shown in Figure 6. The 
digital transceiver (DRX) process controls the 
transceiver card, reads baseband data from it, and 
publishes the real-time stream to multiple 
subscribers.  The subscribers are visualization, 
archive, and derived product processes. Some of 

these processes may publish results for other 
downstream subscribers. Segregating the 
functions using a publish/subscribe model allows 
the processing to be distributed among multiple 
hosts on the network, as needed. Figure 7 
illustrates a real-time visualization application. 

 
Figure 6. A typical host software architecture. 

 

 
 

Figure 7. A software spectrum analyzer and 
oscilloscope. 

 

 
Figure 4. Simplified C++ SD3C class diagram. 

 

Class Function 
p7142sd3c Overall transceiver control 
P7142sd3cDn Down-conversion channels 
P7142Up Up-conversion channels 
Table 2. SD3C main C++ classes. 
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Experience has also shown that separating 
specific functions into independent processes 
leads to a system which is simpler to construct, 
more robust, and easier to troubleshoot. It is 
important that the data distribution scheme allows 
the connections between two processes to 
arbitrarily come and go, without negatively 
impacting either process. The NCAR 449 MHz 
wind profiler has successfully employed this 
architecture, using the Open Data Distribution 
Service (OpenDDS) as the data transport 
mechanism. 
 

7 Example SD3C Applications 

The SD3C is currently employed in three 
operational radars, whose characteristics are 
summarized in Table 3. These systems cover a 
wide range of capabilities. 

Images of the FPGA transceiver host, the 
antennas, and sample observations are presented 
in figures 8 through 16 for each system. 

8 Conclusions 

FPGA development has usually been the 
domain of specialized digital hardware engineering 
teams. In contrast, the SD3C project was 
executed by a very small group of RF system and 
software engineers, who had to learn the 
technology “on the fly”. The learning curve is 
challenging, and required gaining expertise in 
VHDL concepts and FPGA system design. The 
development workflow is intricate and time 
consuming, and the support tools are complicated 
and often non-intuitive. Debugging and testing can 
be very difficult. Based on our experience, the 
following recommendations can be made to 
engineers just starting with this technology: 
 
 

• Gain confidence by starting with the basics of 
VHDL, implementing very simple components 
that can quickly transit the workflow, and that 
can be tested easily. 

• Make the design as modular as possible, and 
reuse VHDL code wherever possible. 

• Create and run simulation test benches for all 
components. 

• Make full use of embedded VHDL probes (e.g. 
ChipScope) to diagnose problems right on the 
FPGA chip. 
 
Use of FPGA technology transforms many 

aspects of radar system development into a major 
software activity. This work benefits greatly by 
employing standard software engineering 
practices. Designing from a software architecture 
perspective, using tools such as integrated 
development environments, source code revision 
control and bug tracking, and creating embedded 
documentation will all greatly enhance the project 
productivity. 

The SD3C project has demonstrated that an 
FPGA solution, based on commercial hardware, 
brings many benefits to system developments 
such as those described here. The FPGA is 
capable of very high signal processing 
performance, thus mitigating large data 
bandwidths and host CPU loads. The technology 
facilitates very flexible applications: the same 
hardware can be customized to meet quite 
different requirements simply by loading the 
application specific firmware. Total system costs 
are reduced by leveraging the use of a single 
FPGA card among several systems, and by the 
consolidation of functions from many discrete 
hardware components onto a single card.  

 
  

 449 MHz Wind Profiler W-Band Cloud Radar Ka-Band Microphysics Radar 

Application Boundary layer 
dynamics 

Cloud microphysics Cloud microphysics and water 
vapor retrieval (with S-band 
radar) 

Frequency 449 MHz 94.4 GHz 34.7 GHz Gate spacing 150m 37m 75 m 

Range 7 km 15 km 7 km 

PRF 40 kHz 10 kHz 1 kHz 

Peak Power 3 kW 1.5 kW 35 kW 

Table 3. SD3C radar applications. 
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The NCAR 449 MHz Wind Profiler 
  

 

 
Figure 9. The host workstation. The FPGA 
transceiver is the card with the three attached 
coax cables. 

 
 

 
Figure 10. Time-height cross sections of signal-to-noise, vertical velocity, and horizontal winds. 

 

 
Figure 8. The spaced antenna array. 
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The NCAR W-Band Cloud Radar 
  

 

 
Figure 11. The transmit and receive antennas, with a 
horizontal reflector for ground testing. 

 

 

 
Figure 12. The host computer chassis. The FPGA 
transceiver is mounted in the carrier card; second 
slot from the left. 

 

 

 
Figure 13. A time-height cross section of reflectivity. 
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The NCAR S-Band/Ka-Band Microphysics Radar 

 

 
 

 
 

 
Figure 7. A reflectivity PPI display from the Ka-band radar. 

 

 
Figure 5. The host computer chassis. The 
FPGA transceiver is mounted in the compact 
PCI carrier below the four larger coax cables. 

 

 
Figure 6. The large S-Band antenna carrying the 
smaller Ka-band antenna on the lower right. 


