
1

10.3 A General Purpose FPGA Based
Radar Controller and Signal Processor

Charles Martin*, Eric Loew, Chris Burghart
National Center for Atmospheric Research, Boulder, Colorado

1 Introduction
1Radar implementations began as fully analog

systems. Digital technologies have held
substantial roles for many years, but until the last
two decades the major digital functionality largely
began at the analog to digital and digital to analog
conversions that occurred at baseband. Signal
down- and up-conversion, as well as specialized
pulse shaping, were performed with discrete
hardware modules. As analog converters became
capable of operating at IF sample rates, it became
possible to migrate the IF processing into the
digital realm. Typically this was performed by
custom circuit boards designed around specialized
components coupled with onboard digital signal
processors. This hardware and embedded
software solution then performed the up- and
down-conversion and other signal processing
functions, and allowed the communication with the
host computer to occur at baseband sample rates.

In the past decade, new capabilities have
emerged in the digital arena, due to the increased
capabilities of the Field Programmable Gate Array
(FPGA). This device provides a foundation for
building general-purpose hardware that can be
adapted to the signal processing needs of many
types of radar (or other) systems. Because the
FPGA is a re-configurable, generic, and high-
performance computing device, it can serve as the
central component in a general-purpose control
and signal processor subsystem. Indeed, there are
now commercial transceivers available that can be
utilized in just this manner. Radar system
designers can configure a purchased transceiver
card, rather than having to develop complex and
specialized hardware.

The purpose of this paper is to summarize one
such project, and provide guidance for those who
are exploring the idea of developing similar
capabilities. A brief introduction to the FPGA is
given first, followed by a description of the
processor architecture. Examples of some diverse

*Corresponding author address: Charles Martin,
National Center for Atmospheric Research, P.O.
Box 3000, Boulder, CO 80307;
email:martinc@ucar.edu

applications of this system are presented, followed
by a discussion of benefits and pitfalls.

2 The Field Programmable Gate Array

The FPGA is simply an integrated circuit with
an extremely large number of generic digital logic
cells. These cells can be dynamically connected to
create building blocks capable of basic digital
functions. These components are then combined
to produce more sophisticated logic, and so on
until very complex functionality is realized. For
example, devices with the complexity of complete
CPUs, DMA memory controllers, and PCI bus
interface controllers can be synthesized for
modern FPGAs. In fact a single FPGA will often be
performing all of these functions and more at
once. The FPGA is also well suited to
implementing pipelined computations that can be
highly parallelized, such as filtering, frequency
conversion, and the fast Fourier transform. These
allow us to implement much of the functionality,
originally located in analog or discrete digital
components, in the re-configurable digital
environment of the FPGA.

The FPGA device will have digital I/O
connections for bringing signals into and out of the
chip. The number of digital I/O lines can number in
the hundreds for the larger devices. Processing
within the FPGA is driven by numerous clock
signals, which gate the digital data through the
configured cells. Clock management is one of the
more challenging aspects of firmware design,
when dealing with mixed frequency applications.
This is common for designs that are connecting
signals that are derived from IF rates to computer
buses, memories, etc. Fortunately the FPGA
development tools provide capabilities for correctly
managing the intersection of clock domains.

3 The FPGA Workflow

The FPGA configuration is commonly
specified with a hardware specification language
such as the VHSIC Hardware Description
Language (VHDL). A sample of VHDL code is
presented in Figure 1. The developer creates text
descriptions that define the connections and
operations of entities such as signals, registers,
and busses. Basic logic and numeric operations,
for example latching, addition and shifting, are

2

defined in the language. Sophisticated
computational components are constructed from
these building blocks. These components are then
“wired” together to implement a complete control
and signal processing system.

The complete FPGA configuration will be
defined in a collection of VHDL text files that can
be modified using any source code text editor.
However, the editing activity is usually performed
within an integrated development environment.
The Xilinx Integrated System Environment (ISE) is
a very well known development package. It
provides an integrated collection of tools that
manage the complete FPGA workflow. The typical
sequence of development is as follows:

• Edit the VHDL file(s)
• Test via simulation
• Synthesize a bitstream
• Download the bitstream to the FPGA
• Test and debug
• Return to editing

Some of these steps can be quite lengthy, and
so one cycle through the workflow can be very
time consuming.

Simulation is essential to efficient FPGA
development. A test vector of simulated inputs are
created and wired to the component, and the clock
input is driven in order to run the simulation. The
outputs are verified for correct behavior. Higher-
level modules comprised of multiple components
are simulated and tested in the same manner.
Tools for facilitating simulation are provided by the
development environment. The simulations are
accurate enough that in general if the VHDL
simulates properly, and the synthesis step is free
of errors, the generated firmware will execute

properly on the FPGA. Crafting and successfully
passing simulation test benches are critical to
creating reliable FPGA firmware designs.

The synthesis step is where the VHDL
description is converted into a specification for the
digital cell connections on the FPGA. There are
several sub-steps in this process. First the
language description is translated into a network
of logical register specifications. The register
specification is then mapped onto the basic
component types available on the particular FPGA
being used. Finally, this logical network must be
assigned to the actual logic cells within the
physical FPGA. This last activity is known as
“place and route”, and it is a significant
computational challenge. The place and route task
is both combinatorial and heuristic, and there is no
guarantee that the tool will be able to reach a
solution that will meet the timing constraints of the
design. The development tools provide facilities
that allow the human to provide some guidance,
such as suggesting logical locations to place major
components of the design. The place and route
algorithm is iterative, as the software attempts to
converge on a solution that meets the timing
requirements. It is not uncommon for the place
and route task to require 12 hours or more on a
capable workstation. For this project, place and
route runs in about 20 minutes.

The synthesis part of the workflow can cause
the FPGA workflow to be tedious. This is another
reason why simulation can greatly enhance the
development cycle.

The product of synthesis is the “bitstream”,
which is the lowest level specification of the FPGA
connections. The bitstream must now be made
available to the FPGA. It can be downloaded
directly to the FPGA, but it is more common to
“burn” it into a non-volatile memory such as an
EEPROM, which will later be loaded into the
volatile FPGA. In either case, the download can be
performed via a JTAG interface, which provides a
direct hardware connection to the FPGA device. If
the FPGA is part of a card located on a host
computer’s backplane, there will often be a
mechanism for loading the FPGA directly across
the host bus. This eliminates the need for
specialized hardware to support the JTAG
capability. In some cases only the volatile FPGA
load can be performed via the host backplane, and
the JTAG capability is still required for
programming the non-volatile storage.

Once the FPGA has been configured with the
bitstream, system testing and debugging can be
performed. If FPGA problems are detected,
debugging can be initiated. Usually this must be

--! Determine if we are on the even or odd pulse
--! by counting the gates.
even_odd: process (CLK, RST, g, even)
 begin
 if (RST = '1') then
 even <= '1';
 g <= std_logic_vector(conv_signed(0, 16));

 elsif (rising_edge(CLK)) then
 if (VALID_IN = '1') then
 if (g = GATES-1) then
 even <= not even;
 g <= std_logic_vector(conv_signed(0,
16));
 else
 g <= g + 1;
 end if;
 end if;

Figure 1. Example VHDL source code.

3

done indirectly, such as by altering the system
configuration in order to expose and diagnose the
FPGA behavior. Xilinx also provides a very
powerful method (ChipScope) for inserting
firmware probes into the VHDL code so that the
logic behavior can be tracked directly within the
operating FPGA.

Another powerful technique exists for creating
firmware components. A processing algorithm can
be written in a high-level language, such as
Matlab. This code is then compiled to produce a
firmware component that can be integrated with
the VHDL code. Matlab provides a complete
toolbox for crafting signal processing elements
such as filters, fast Fourier transforms, etc. The full
functionality of Matlab is available to investigate
and characterize the performance of these
components.

4 Transceiver Cards

The FPGA provides the computational
foundation for a radar controller and signal
processor, but it must be integrated with other
hardware. A transceiver card is required which can
provide receive, transmit and control signal
functions. Commercial vendors provide products
that provide this general-purpose functionality. The
FPGA is typically combined with analog-to-digital
and digital-to-analog converters, local memory,
digital I/O lines and bus interfaces. The Pentek
Model 7142 (Figure 2) was employed for this
project. As is common with these products, this
compact card is based on the Portable Mezzanine
Card (PMC) format. A wide variety of carrier cards
are available to host the PMC in common
computer backplanes.

The hardware vendor typically offers a board
support package, which provides drivers and
application libraries for the host system, and
firmware source code for the FPGA. The first two
provide facilities to access the card on various
operating systems. The firmware package can be
a version of VHDL code that will run on the FPGA
and provide baseline functionality, so that the card
can be used in some cases without any VHDL
development. The end user can customize the
supplied VHDL for their specific purposes.
It should be noted that the quality of the firmware
package will have a significant impact on the
success of the development. It should be logically
organized and well documented, both in the VHDL
files and with other documents. Schematic type
drawings are invaluable. Ideally it will come with a
complete project specification for a development
environment such as ISE. The best packages will

contain explicit user blocks embedded in the data
flow, to facilitate insertion of custom processing.
The board support for the Pentek card was found
to be top notch in this regard.

5 Radar Implementations

High-level diagrams depicting radar systems
both with and without an FPGA based transceiver
card are shown in Figure 3. The transceiver card
replaces a large number of discrete components.
This consolidation has several benefits. The
design, construction and testing of some
expensive analog sections are completely
eliminated. Because the frequency conversion and
filtering occur in the digital domain, the processing
responses are completely matched and
characterized without any measurement
procedures. Most important though, is that all of
these functions can be tailored for specific
applications, with no additional hardware
modification.

6 The Software-Defined Digital Down
Converter (SD3C)

The SD3C is a framework that implements the
radar signal processing and control functions. It is
built on: (a) firmware operating on a Pentek 7142
transceiver card, and (b) software support libraries
for the host computer system. These two
subsystems interact via the computer bus that the
card is attached to.

Figure 2. The Pentek 7142 FPGA transceiver.
The FPGA integrated circuit is enclosed within
the heat sink.

4

The SD3C implementation is described here in
terms of the Pentek card that it currently runs on,
but it should be noted that a very similar
architecture could be realized using many of the
commercially available transceiver cards available.
Much of the firmware could be reused with other
vendor hardware.

6.1 SD3C Firmware

Figure 4 presents a high level diagram of the
SD3C signal-processing pipeline.

The SD3C firmware builds upon the Pentek
“GateFlow” infrastructure. GateFlow provides a
reference firmware design that is capable of
running the transceiver card with basic A/D
sampling, D/A output and digital I/O. The Pentek
card is quite sophisticated, providing flexible
capabilities for onboard memory capture, data
routing and device configuration.

GateFlow provides specific “user blocks” that
intercept the data flow through the FPGA, and into
which the user can insert custom processing. The
user blocks meet some but not all of the SD3C
needs. The down conversion, matched filtering,
pulse tagging, coherent integration and
complimentary code processing are implemented
in VHDL components that are instantiated in the
user blocks.

GateFlow is oriented towards communications
processing, and therefore does not inherently
provide the functions needed for pulsed systems.
This required other areas of GateFlow to be
modified so that the down-converted data signals
could be sampled on the pulse repetition
frequency (PRF) boundaries. Similarly, the
transmit pulse is generated by feeding baseband
values to the up-converter, and GateFlow was
modified to also allow this to be synchronized with
the PRF.

Figure 2. Schematics of a radar system with and without an FPGA transceiver. The yellow boxes denote
functions that are performed by the FPGA firmware.

5

A programmable VHDL timer component was
created in order to generate timing signals.
Multiple copies of the timer are instantiated for the
required timing signals, such as the PRF, blanker,
and amplifier power control. These signals can be
used within the FPGA to gate the signal
processing, and they are routed to the FPGA I/O
pins, where they can be brought off board for
connection to other hardware. The current design
provides eight independent timers. If additional
signals are required, it is a simple matter to
instantiate additional timers.

Many of the custom functions within the SD3C
are configurable. Typical parameters include filter
coefficients, timer periods, integration intervals,
etc. GateFlow has a control register module that
allows host software to write and read
configuration registers for the existing GateFlow
functions. This module was extended to allow the
same configuration for SD3C functions.

Table 1 summarizes the SD3C custom VHDL
functions that are incorporated into the GateFlow
foundation.

Block Function
Timer Implements a gang of timers for

timing signal generation. All timers
are started by a common pulse, but
are free running after that.

Control Provides the interface for reading

and writing SD3C configuration and
control registers.

Down
Converter

Combines an fs/n down converter, a
Kaiser filter and a Gaussian filter.

Pulse
Tagging

Prepends an incrementing PRF
pulse number, I/Q identifier, format
identifier, and channel number to
each received pulse.

Coherent
Integration

Sums the samples for each range
gate, for I and Q, for each channel.
If complimentary coding is enabled,
the sums are further segregated by
even and odd pulse.

Table 1. SD3C VHDL components.

6.2 SD3C Host Software

The transceiver card and its firmware provide
the hardware component for the SD3C. A software
infrastructure implements a high level capability for
the host computer to interact with the card.

As is common with most commercial
transceiver cards, the vendor markets a low-level
software interface that controls the basic card
functions. In this case, Pentek provides the
“ReadyFlow” package to support the P7142.
ReadyFlow allows the user to configure and
capture data from direct memory access (DMA)
bus transfers, and to configure other functions in
the FPGA.

Figure 3. The SD3C firmware architecture

6

The SD3C package builds upon ReadyFlow to
create a programming interface that represents
the characteristics of a radar processor, and
manages the custom capabilities of the SD3C
firmware. This takes the form of a C++ class
library, whose class hierarchy is shown in Figure
5. The functions of the primary classes are
described in Table 2. These three classes are all
that is required in order to operate the transceiver
as a radar system. The typical program sequence
is as follows:

• Create a p7142sdc3 object, representing a
Pentek P7142 card.

• Create a p7142Up up-converter object, for
configuring the transmit pulse generation.

• Create p7142sd3cDn down-converter objects,
one per channel.

• Configure the timers on the p7142sdc3.
• Issue a start command to the p7142sdc3.
• Loop on read() calls to each of the

p7142sd3cDn objects, ingesting the baseband
received data.

Because the SD3C prepends identifying tags

to each received pulse, the p7142sd3cDn class is
able to detect if data are dropped during the DMA
transfer between the transceiver and the host
system. This can become an issue on a heavily
loaded host with a large data bandwidth. The tags
also allow accurate time stamps to be applied to
the pulses, which would otherwise be ambiguous
due to data transmission lags through the system.

Using the SD3C C++ class library, a complete
radar system can be developed. A typical host
software architecture is shown in Figure 6. The
digital transceiver (DRX) process controls the
transceiver card, reads baseband data from it, and
publishes the real-time stream to multiple
subscribers. The subscribers are visualization,
archive, and derived product processes. Some of

these processes may publish results for other
downstream subscribers. Segregating the
functions using a publish/subscribe model allows
the processing to be distributed among multiple
hosts on the network, as needed. Figure 7
illustrates a real-time visualization application.

Figure 6. A typical host software architecture.

Figure 7. A software spectrum analyzer and
oscilloscope.

Figure 4. Simplified C++ SD3C class diagram.

Class Function
p7142sd3c Overall transceiver control
P7142sd3cDn Down-conversion channels
P7142Up Up-conversion channels
Table 2. SD3C main C++ classes.

7

Experience has also shown that separating
specific functions into independent processes
leads to a system which is simpler to construct,
more robust, and easier to troubleshoot. It is
important that the data distribution scheme allows
the connections between two processes to
arbitrarily come and go, without negatively
impacting either process. The NCAR 449 MHz
wind profiler has successfully employed this
architecture, using the Open Data Distribution
Service (OpenDDS) as the data transport
mechanism.

7 Example SD3C Applications

The SD3C is currently employed in three
operational radars, whose characteristics are
summarized in Table 3. These systems cover a
wide range of capabilities.

Images of the FPGA transceiver host, the
antennas, and sample observations are presented
in figures 8 through 16 for each system.

8 Conclusions

FPGA development has usually been the
domain of specialized digital hardware engineering
teams. In contrast, the SD3C project was
executed by a very small group of RF system and
software engineers, who had to learn the
technology “on the fly”. The learning curve is
challenging, and required gaining expertise in
VHDL concepts and FPGA system design. The
development workflow is intricate and time
consuming, and the support tools are complicated
and often non-intuitive. Debugging and testing can
be very difficult. Based on our experience, the
following recommendations can be made to
engineers just starting with this technology:

• Gain confidence by starting with the basics of
VHDL, implementing very simple components
that can quickly transit the workflow, and that
can be tested easily.

• Make the design as modular as possible, and
reuse VHDL code wherever possible.

• Create and run simulation test benches for all
components.

• Make full use of embedded VHDL probes (e.g.
ChipScope) to diagnose problems right on the
FPGA chip.

Use of FPGA technology transforms many

aspects of radar system development into a major
software activity. This work benefits greatly by
employing standard software engineering
practices. Designing from a software architecture
perspective, using tools such as integrated
development environments, source code revision
control and bug tracking, and creating embedded
documentation will all greatly enhance the project
productivity.

The SD3C project has demonstrated that an
FPGA solution, based on commercial hardware,
brings many benefits to system developments
such as those described here. The FPGA is
capable of very high signal processing
performance, thus mitigating large data
bandwidths and host CPU loads. The technology
facilitates very flexible applications: the same
hardware can be customized to meet quite
different requirements simply by loading the
application specific firmware. Total system costs
are reduced by leveraging the use of a single
FPGA card among several systems, and by the
consolidation of functions from many discrete
hardware components onto a single card.

 449 MHz Wind Profiler W-Band Cloud Radar Ka-Band Microphysics Radar

Application Boundary layer
dynamics

Cloud microphysics Cloud microphysics and water
vapor retrieval (with S-band
radar)

Frequency 449 MHz 94.4 GHz 34.7 GHz Gate spacing 150m 37m 75 m

Range 7 km 15 km 7 km

PRF 40 kHz 10 kHz 1 kHz

Peak Power 3 kW 1.5 kW 35 kW

Table 3. SD3C radar applications.

8

The NCAR 449 MHz Wind Profiler

Figure 9. The host workstation. The FPGA
transceiver is the card with the three attached
coax cables.

Figure 10. Time-height cross sections of signal-to-noise, vertical velocity, and horizontal winds.

Figure 8. The spaced antenna array.

9

The NCAR W-Band Cloud Radar

Figure 11. The transmit and receive antennas, with a
horizontal reflector for ground testing.

Figure 12. The host computer chassis. The FPGA
transceiver is mounted in the carrier card; second
slot from the left.

Figure 13. A time-height cross section of reflectivity.

10

The NCAR S-Band/Ka-Band Microphysics Radar

Figure 7. A reflectivity PPI display from the Ka-band radar.

Figure 5. The host computer chassis. The
FPGA transceiver is mounted in the compact
PCI carrier below the four larger coax cables.

Figure 6. The large S-Band antenna carrying the
smaller Ka-band antenna on the lower right.

