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Abstract 
There are continued attempts towards unifying the general circulation and cloud-resolving models. For designing high-resolution general circulation models, it is necessary to formulate a set of equations for the 
nonhydrostatic system such that when the nonhydrostatic pressure is neglected, the system of equations reduces to a quasi-hydrostatic compressible model. Following the Arakawa and Konor (2009) approach, 
the governing equations of a unified model on icosahedral-hexagonal grid are formulated in the hybrid vertical coordinate. Further to this formulation, the flow dependent variables are represented in the basic 
equations into two parts - grid-resolved and a subgrid part to formulate a system of equations that is capable of simulating the variability of unresolved processes. The advantage of splitting is obvious because the 
system of equations for grid-resolved variables are indeed those of a quasi-hydrostatic compressible model of the atmosphere. The discrete formulations of divergence, vorticity and gradient are then used to solve 
the shallow water model on the icosahedral-hexagonal grid as an example of the first stage development of a comprehensive unified model.  
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Introduction: The  high-resolution  operational  models  of 
weather  forecasting  must  run  with  grid  of  a  kilometer  on  newer 
computing platforms (GPUs or APUs). Governing equations do not 
represent the stochastic part  in weather and climate that becomes 
important in atmospheric flows resolved on the scale of a kilometer. 
Arakawa and Konor (2009) have presented a system of equations 
that unites the nonhydrostatic anelastic system and quasi-hydrostatic 
system to derive the governing equations that form the foundation of 
cloud-resolving models.  This  is  the starting point  of  unifying the 
Reynolds stress equations with anelastic,  quasi-hydrostatic system 
of equations. The key assumption here is that even in the unified 
system, subgrid scale motions of the atmosphere may not have been 
fully  represented  the  stochastic  nature  of  atmospheric  motions. 
Palmer (1989) showed that adding the stochastic perturbations to the 
governing equations improves the forecasting skill of the numerical 
weather prediction (NWP) model.. The multimodel superensemble 
technique, developed by Krishnamurti and coworkers (Krishnamurti 
et  al.  1999,  2000)  has  been  demonstrated  as  a  powerful  post-
processing tool for weather forecast parameters. This is another way 
to incorporate the stochastic nature of the meteorological flows in to 
weather and climate forecasting. Here we derive the set of equations 
that  becomes  an  integral  part  of  the  anelastic,  quasi-hydrostatic 
system  because  the  stochastic  perturbations  in  the  governing 
equations  may  be  defined  by  solutions  of  these  equations.  An 
attempt has been made in this paper to include the effect of second 
order  correlation  terms  in  the  governing  equations.  A systematic 
formulation has been presented which takes the advantage of  the 
advances  already  made  in  this  direction  especially  in  turbulence 
modelling, large eddy simulations (LES). 	


 
Governing Equations: 
We have followed the philosophy of Arakawa and Konor (2009): 
“One of the main points of the Unified System is that it reduces to a 
quasi-hydrostatic  model  when  the  nonhydrostatic  pressure  is 
neglected.  In  this  way the  system maintains  a  close  tie  with  the 
existing primitive equation models.” Thus, the system of equations 
formulated here using the Reynolds averaging, form an integral part 
of  the governing equations,  which reduces to an anelastic,  quasi-
hydrostatic system if the subgrid scale terms representing stochastic 
perturbations  are  neglected  in  the  equations.  The  solution  of  the 
anelastic  and  quasi-hydrostatic  system  is  assumed  in  this 
formulation  as  the  “grid-resolved  part”  relative  to  which  the 
perturbation fields are derived. Thus, 	


 
 
 
	


	


Operators:	


 
  

	


The above set of governing equations include the subgrid scale terms.	



Added to these equations are 16 more equations for other 
second order correlations terms of similar type, which 
have been omitted here.  In each of the equation, the 
triple correction terms are to be parameterized, which is 
the closure problem.  
 
Filtering of Sound Waves  
As pointed out by Daly and Harlow (1970) and, Hanjalić 
and Launder (2011) the correlations of velocity 
fluctuations with pressure fluctuations will propagate with 
the speed of sound, which will immediately mask the 
meteorologically important waves. Thus in our design the 
acoustic waves have been removed at each stage: 
 (i)     Sound waves have been eliminated from the system 
representing the resolved part of motion following the 
theory of Arakawa and Konor (2009); 
(ii)  Sound waves have been eliminated from “subgrid 
part” of the motion by neglecting the correlations of 
pressure and velocity fluctuations.  
	


Second-Moment Closures:  
The set of equations given is Sec. 2 involves triple 
correlation terms such as , , etc. are to parameterized. 
These terms are modelled following the “generalized 
gradient diffusion hypothesis (GGDH)” of Daly and Harlow 
(1970) in the manner as proposed by Hanjalić and 
Launder (1972, 2011). Thus a model for  consists of three 
terms: 
                                        
 
 
Ε is the dissipation parameter and      is the kinetic energy  
of velocity perturbations. 
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Test Problem: Rossby-Haurwitz wave	


	


 The discrete operators (6.1)-(6.3) were verified with several test cases for the shallow-water equations on a sphere (Mittal 2008) using the icosahedral-hexagonal 
grids. Tests for the Rossby-Haurwitz wave is discussed here. The shallow-water equations were integrated up to day-14 at two different resolutions: one at 
Level-48 (23,042 gridpoints) and at Level-64 (40,962 gridpoints).  Using these forms of the discrete operators for grad, div and curl in the shallow-water 
equations produced results that match well with other studies (Thuburn, 1997) for this test case.  Most importantly, the global invariants (energy and enstrophy) 
were very maintained. Here we only show in Fig. 3 the results of day-14 for this test case for the height field. The ratios of total energy and enstrophy with their 
respective day-0 values were RTE = 1.0004908; RTZ = 1.0013307. The ratio of the total mass on day-14 to day-0 and the day-0 total mass was 0.99997794.	



Governing equations of the reference state: 	


	


The reference state is the solution of anelastic, quasi-hydrostatic 
equation system of equations with the quasi-hydrostatic pressure 
(p) as the vertical coordinate. 	
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