
A System for Storing and Analyzing a
Massive Climatological Database of

Modeled Air Mass Trajectories

Daniel Pryden1, Sean Raffuse1, Narasimhan (“Sim”) Larkin2,
Thom Dedecko1, Jennifer DeWinter1, Kenneth Craig1

1Sonoma Technology, Inc.

Petaluma, California
2USDA Forest Service, Pacific Northwest Research Station

Seattle, Washington

Presented at the American Meteorological Society 92nd Annual Meeting,
Second Symposium on Advances in Modeling and Analysis Using Python

New Orleans, Louisiana
January 23, 2012

STI-4186

Arctic Black Carbon Study (ABCS)
• Goal was to study patterns of

transport of black carbon (BC) to
the Arctic

• Can biomass burning (prescribed
fire) affect climate change?

• Large-scale analysis using
NOAA’s HYSPLIT model
– 30 years of data (1979-2008)

2

(Credit: NASA)

Large-Scale Data

• Modeled nearly
6×108 individual
trajectories

• Final data set
contained
1.4×1011 points

• How did we do
it, and what did
we learn?

3

4.7×1010 data points went into this image.

Packed File Format for Trajectories (PFFT)

• HYSPLIT model produces results
– Text format
– Each waypoint on its own line
– Each model initialization produces its own file

• We wanted
– Compact binary format
– Fast to read or write
– Efficient for either full scan or random access
– Multiple model initialization time steps in a file

• Solution: Packed File Format for Trajectories (PFFT)

4

Runner, Spawner, and Reaper

Goals
• Perform tens of

thousands of separate
runs of the HYSPLIT
model

• Efficiently use many
processors in parallel

• Collect results of many
HYSPLIT runs into a
single file

A three-part solution
• Runner.py

– Command-line script; sets
up date ranges and
configuration

• Spawner.py
– Launches hymodelt

processes
– When model executions

finish, adds them to
Reaper’s work queue

• Reaper.py
– Reads in HYSPLIT output

and writes PFFT

5

Modeled 30 years of trajectories in
about 3 weeks with 24 cores

How Do You Analyze 1.4×1011 Points?

• Only interested in aggregate results
– At a minimum, aggregate per day
– Usually, aggregates per month or year

• Want results on a map
– Individual waypoints projected to grid cells
– Value for a particular grid cell is an aggregate

of values for all the trajectories that pass
through that cell

6

Functional Programming

• Queries are implemented by defining functions
• Basic form is three functions: filter(),
map(), and reduce()

• Processing takes the general form of a left fold,
so aggregation queries can be performed in
O(n) time with O(1) storage

7

filter_func = lambda traj: return True/False (predicate)
projection_func = lambda traj: return x, y, t
map_func = lambda traj: return object (initial grid-cell value)
reduce_func = lambda a, b: combine two grid-cell values
simplify_func = lambda value: return simplified value in correct type

Command-line Usage

• Through the magic of eval() we can
define functions on the command line

8

make_grid.py
 -f FILTER_FUNC
 -m MAP_FUNC
 -r REDUCE_FUNC
 -s SIMPLIFY_FUNC
 -d DATA_TYPE

• Typical command line:
./make_grid.py -m "lambda traj: 1" -r "lambda a,
b: a + b" output_dir 2006010100 2006053118
/data/HYSPLIT/pfft/2006.pfft

9

Examples (1 of 2)

Count of trajectories per grid cell
Here we count 1 for each trajectory in a grid cell,
and we reduce by adding the counts together.

map_func = lambda traj: 1
reduce_func = lambda a, b: a + b

10

Examples (2 of 2)

Mean heights of trajectories
This one is a bit more tricky. We map each trajectory
to a 2-tuple of (count_trajs, total_height). Then the
reduce_func can reduce them together by just adding
the counts and the totals. But we need a final step,
in the simplify_func, to simplify our 2-tuple into an
actual output value, by dividing the total by the count
to come up with an actual average value.

map_func = lambda traj: (1, traj.height)
reduce_func = lambda a, b: (a[0] + b[0], a[1] + b[1])
simplify_func = lambda value: float(value[1]) / float(value[0])

11

Results

• What is the likelihood of transport from the
United States to the Arctic? How does this
likelihood vary regionally?
– Transport is possible (up to 42% in winter) at altitudes

typical of prescribed fire injection (< 2,000 meters)
– Transport is more likely at northern latitudes (varies

regionally)

• Is transport more likely during certain
seasons or months?
– Transport is more likely during spring, fall, and winter
– Seasonal, monthly, and daily variability due to synoptic

patterns

12

Conclusion

• Wrapping a command-line model with a Python
class is a useful technique enabling large-scale
use.

• Higher-order functions and functional
programming techniques are a powerful way of
constructing analyses on large data sets.

Additional Material: PFFT Structure

• Block sizes defined by
header

• Values (latitude,
longitude, height, etc.)
stored as 32-bit floats

• Reserved spaces for
future extensions

• Timestamps and file
offsets are 64-bit

• Adler-32 checksums

13

FILE_HEADER_BLOCK

INDEX_BLOCK

INDEX_BLOCK

INDEX_BLOCK
INIT_STEP_BLOCK

checksum

TRAJ_STEP_BLOCK

TRAJ_STEP_BLOCK

INIT_STEP_BLOCK

Additional Material: PFFT Implementation

Implementation
• Uses Python’s struct

module to read and write
values

• Adler-32 checksum
implementation courtesy
of the zlib module

• Lazy reading using
generator functions
(yield keyword)

Usage

14

Running HYSPLIT: hysplit.py

• Internal library used on several projects
• Wrapped command-line hymodelt

executable using subprocess module
• DataLocation class and subclasses

determine the locations of meteorological
data to provide to HYSPLIT, given a
desired date/time range

15

General Form (Pseudocode)

16

	A System for Storing and Analyzing a Massive Climatological Database of Modeled Air Mass Trajectories
	Arctic Black Carbon Study (ABCS)
	Large-Scale Data
	Packed File Format for Trajectories (PFFT)
	Runner, Spawner, and Reaper
	How Do You Analyze 1.4×1011 Points?
	Functional Programming
	Command-line Usage
	Examples (1 of 2)
	Examples (2 of 2)
	Results
	Conclusion
	Additional Material: PFFT Structure
	Additional Material: PFFT Implementation
	Running HYSPLIT: hysplit.py
	General Form (Pseudocode)

