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Arctic Black Carbon Study (ABCS) 
• Goal was to study patterns of 

transport of black carbon (BC) to 
the Arctic 

• Can biomass burning (prescribed 
fire) affect climate change? 

• Large-scale analysis using 
NOAA’s HYSPLIT model 
– 30 years of data (1979-2008) 

 

2 

(Credit:  NASA) 



Large-Scale Data 

• Modeled nearly 
6×108 individual 
trajectories 

• Final data set 
contained 
1.4×1011 points 
 

• How did we do 
it, and what did 
we learn? 
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4.7×1010 data points went into this image. 



Packed File Format for Trajectories (PFFT) 

• HYSPLIT model produces results 
– Text format 
– Each waypoint on its own line 
– Each model initialization produces its own file 

• We wanted 
– Compact binary format 
– Fast to read or write 
– Efficient for either full scan or random access 
– Multiple model initialization time steps in a file 

• Solution:  Packed File Format for Trajectories (PFFT) 
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Runner, Spawner, and Reaper 

Goals 
• Perform tens of 

thousands of separate 
runs of the HYSPLIT 
model 

• Efficiently use many 
processors in parallel 

• Collect results of many 
HYSPLIT runs into a 
single file 

A three-part solution 
• Runner.py 

– Command-line script; sets 
up date ranges and 
configuration 

• Spawner.py 
– Launches hymodelt 

processes 
– When model executions 

finish, adds them to 
Reaper’s work queue 

• Reaper.py 
– Reads in HYSPLIT output 

and writes PFFT 
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Modeled 30 years of trajectories in 
about 3 weeks with 24 cores 



How Do You Analyze 1.4×1011 Points? 

• Only interested in aggregate results 
– At a minimum, aggregate per day 
– Usually, aggregates per month or year 

• Want results on a map 
– Individual waypoints projected to grid cells 
– Value for a particular grid cell is an aggregate 

of values for all the trajectories that pass 
through that cell 
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Functional Programming 

• Queries are implemented by defining functions 
• Basic form is three functions:  filter(), 
map(), and reduce() 

• Processing takes the general form of a left fold, 
so aggregation queries can be performed in 
O(n) time with O(1) storage 
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filter_func = lambda traj: return True/False (predicate) 
projection_func = lambda traj: return x, y, t 
map_func = lambda traj: return object (initial grid-cell value) 
reduce_func = lambda a, b: combine two grid-cell values 
simplify_func = lambda value: return simplified value in correct type 



Command-line Usage 

• Through the magic of eval() we can 
define functions on the command line 
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make_grid.py 
    -f FILTER_FUNC 
    -m MAP_FUNC 
    -r REDUCE_FUNC 
    -s SIMPLIFY_FUNC 
    -d DATA_TYPE 

• Typical command line: 
./make_grid.py -m "lambda traj: 1" -r "lambda a, 
b: a + b" output_dir 2006010100 2006053118 
/data/HYSPLIT/pfft/2006.pfft 
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Examples (1 of 2) 

Count of trajectories per grid cell 
# Here we count 1 for each trajectory in a grid cell,  
# and we reduce by adding the counts together. 
 
map_func = lambda traj: 1 
reduce_func = lambda a, b: a + b 
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Examples (2 of 2) 

Mean heights of trajectories 
# This one is a bit more tricky.  We map each trajectory  
# to a 2-tuple of (count_trajs, total_height).  Then the 
# reduce_func can reduce them together by just adding  
# the counts and the totals.  But we need a final step,  
# in the simplify_func, to simplify our 2-tuple into an 
# actual output value, by dividing the total by the count 
# to come up with an actual average value. 
 
map_func = lambda traj: (1, traj.height) 
reduce_func = lambda a, b: (a[0] + b[0], a[1] + b[1]) 
simplify_func = lambda value: float(value[1]) / float(value[0]) 
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Results 

• What is the likelihood of transport from the 
United States to the Arctic?  How does this 
likelihood vary regionally? 
– Transport is possible (up to 42% in winter) at altitudes 

typical of prescribed fire injection (< 2,000 meters) 
– Transport is more likely at northern latitudes (varies 

regionally) 

• Is transport more likely during certain 
seasons or months? 
– Transport is more likely during spring, fall, and winter 
– Seasonal, monthly, and daily variability due to synoptic 

patterns 
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Conclusion 

• Wrapping a command-line model with a Python 
class is a useful technique enabling large-scale 
use. 

• Higher-order functions and functional 
programming techniques are a powerful way of 
constructing analyses on large data sets. 



Additional Material:  PFFT Structure 

• Block sizes defined by 
header 

• Values (latitude, 
longitude, height, etc.) 
stored as 32-bit floats 

• Reserved spaces for 
future extensions 

• Timestamps and file 
offsets are 64-bit 

• Adler-32 checksums 
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FILE_HEADER_BLOCK 

INDEX_BLOCK 

INDEX_BLOCK 

INDEX_BLOCK 
INIT_STEP_BLOCK 

 
 
 
 
 
 

checksum 

TRAJ_STEP_BLOCK 
 

TRAJ_STEP_BLOCK 
 

INIT_STEP_BLOCK 
 
 
 
 
 

 



Additional Material:  PFFT Implementation 

Implementation 
• Uses Python’s struct 

module to read and write 
values 

• Adler-32 checksum 
implementation courtesy 
of the zlib module 

• Lazy reading using 
generator functions 
(yield keyword)  

Usage 
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Running HYSPLIT:  hysplit.py 

• Internal library used on several projects 
• Wrapped command-line hymodelt 

executable using subprocess module 
• DataLocation class and subclasses 

determine the locations of meteorological 
data to provide to HYSPLIT, given a 
desired date/time range 
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General Form (Pseudocode) 
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