INTRODUCTION

1. INTRODUCTION

• For over 6 years, AIRS radiances have been assimilated operationally into
 National (e.g. EMC; Le Marshall et al. 2006)) and International (e.g.
 ECMWF; McNally et al. 2006), operational centers; assimilated in the
 North American Mesoscale (NAM) since 2008

• Due partly to data latency and operational constraints, hyperspectral
 radiation assimilation has had less impact on the Gridpoint Statistical
 Interpolation (GSI) system used in the NAM and GFS

• Objective of this project is to use AIRS retrieved profiles as a proxy for
 the AIRS radiances in situations where AIRS radiances are unable to be
 assimilated in the current operational system by evaluating location and
 magnitude of analysis increments

2. BACKGROUND ON AIRS DATA ASSIMILATION

2.1. AIRS Radiance Assimilation

• Radiative transfer model is run outside of data assimilation system to
 retrieve temperature and moisture soundings

• Using V5 AIRS Science Team retrieved profiles

• Location matching performed to only assimilate AIRS profiles from
 granules that were available in real-time NAM system; observation
 locations within the granules will vary based on data removed by
 radiance assimilation but retained in profile assimilation (see Fig. 6)

• Although not optimal, retrieved profiles are currently assimilated into GSI
 as RAOBs with observation errors identical to RAOBs (Fig. 3)

2.2. AIRS Profile Assimilation

• Diagnostic statements added within GSI source code determine which radiances
 pass the multiple clear-radiance checks and are actively assimilated at which
 pressure levels (see Fig. 6b for example)

• Operationally, the locations of these radiances are thinned to 120 km and only
 free radiances are assimilated (compare convective clouds over eastern
 CO and western KS in Fig. 6a with location of white spaces in swath in Fig.
 6b) leaving large gaps around cloud features that are important for capturing
 storm dynamics

• Use of profiles at full spatial with quality control to determine highest quality data
 fills in gaps around the convective cloud feature and may allow for greater impact
 in meteorologically significant regions

• Model simulations are ongoing using NASA Center for Climate Simulations
 (NCCS) Joint Center in a Big Box (JIBB) supercomputing system

• Once simulations are completed, location and magnitude of analysis increments will
 be compared to the imagery tools shown in Figure 5

5. SUMMARY

• Patterns of the percent of cloud free radiances to be assimilated matches well with
 CTP and visible imagery from MODIS (Fig. 5a,b)

• Quantitative assessment of GSI-determined CTP for radiance assimilation to be
 compared to MODIS CTP, AIRS profile CTP (not shown), and AIRS P_{min} QC variable
 (Fig. 5d)

• Increased impact of AIRS radiances may be achieved by enhancing
 the selection of assimilated radiances within GSI

• Using retrieved profiles to show regions where information from
 AIRS data could impact radiance assimilation may result in additional
 impact from radiance observations

• Results of this regional study can be applied to the global system