

New generation

compact pulsed infrared coherent **Doppler Lidars validation** against Wind Profiler Radar and **Radiosonde measurements** at the Lindenberg GRUAN site

B. Stiller (1), R. Leinweber (1), S. Emeis (2), S. Lolli (3), M. Mauder (2), L. Sauvage (3), and L. Thobois (3)

- (1) German Meteorological Service (DWD), Lindenberg Meteorological Observatory / Richard-Aßmann-Observatory, 15848 Tauche OT Lindenberg, Germany
- (2) KIT- Institute of Meteorology and Climate Research (IMK-IFU) Kreuzeckbahnstr. 19 82467 Garmisch-Partenkirchen, Germany

(3) Leosphere, 76 Rue Monceau, 75008 Paris, France

Contents

 \Rightarrow Motivation

- ⇒ Lindenberg GRUAN Site and Remote Sensing Systems
- ⇒ Campaign Structure and Methods
- ⇒ Preliminary Results

\Rightarrow Conclusions

Accurate knowledge of wind fields is crucial for the improvement of Numerical Weather Prediction (NWP) models.

DWD (German National Meteorological Service) prepares Low Level Wind Shear Alert Systems (LLWAS) for the Frankfurt and Munich, Germany airports.

The systems will consist of a METEOR 50DX Dual Polarisation Weather Radar, and a WindTracer Doppler Lidar

(Lockheed Martin Coherent Technologies).

Scientists of the Lindenberg GRUAN site are included in LLWAS-project as experts of remote sensing and prepare verification campaigns of LLWAS-sensors currently.

Three different Doppler Wind Lidar systems, developed by Leosphere and Halo Photonics, respectively, were deployed in two independent campaigns at Lindenberg Observatory during April/May 2011 and August-December 2011 within the framework of the European COST action ES 0702 (EG-CLIMET).

Lidar instruments were validated against the 482 MHz Wind Profiler, daily Radio Soundings, and NWP model output in order to be used operationally.

Contents

- \Rightarrow Motivation
- ⇒ Lindenberg GRUAN Site and Remote Sensing Systems
- ⇒ Campaign Structure and Methods
- ⇒ Preliminary Results

\Rightarrow Conclusions

GRUAN = <u>G</u>COS <u>R</u>eference <u>U</u>pper <u>A</u>ir <u>N</u>etwork

The Richard Aßmann Observatory is located about 65 km south-east of Berlin.

Latitude:52.21 ℃Longitude:14.12 ℃Altitude:98 m

Windlidar Inter Comparison Campaign 2011 Performance (operational availability)

Campaign Intercomparison Methods

- compare / assess operational availability
- compare against the 482 Mhz Windprofiler, 4 times daily launched radiosoundings, and NWP models output
 - ... measurements as time series
 - ... profiles at a certain time
 - differences for longer periods
 - ... different elements
 - (horizontal wind speed, direction, components u, v, w, root mean square differences)

compare lidar ranges to meteorological conditions

Contents

- \Rightarrow Motivation
- ⇒ Lindenberg GRUAN Site and Remote Sensing Systems
- ⇒ Campaign Structure and Methods
- ⇒ Preliminary Results
- \Rightarrow Conclusions

(Preliminary) Results

All wind lidars are close to 482 Mhz Windprofiler and radiosoundings

Examples \rightarrow

(Preliminary) Results

- All wind lidars are close to 482 Mhz Windprofiler and radiosoundings
- There are sometimes differences to NWP model output

Advantages of two independent wind profiling systems:

(Preliminary) Results

- All wind lidars are close to 482 Mhz Windprofiler and radiosoundings
- There are sometimes differences to NWP model output
- In April/May there was a bias in windcube WLS70 wind speed (0.4 .. 0.5 m/s) with Windprofiler as reference, in November/December no bias were found for wind lidars

(Preliminary) Results

- All wind lidars are close to 482 Mhz Windprofiler and radiosoundings
- There are some times differences to NWP model output
- In April/May there was a bias in windcube WLS70 wind speed (0.4..0.5 m/s) with Windprofiler as reference, in November/December no bias were found for wind lidars
- Comparisons show ground clutter effects of Windprofiler?

Examples \rightarrow

[180 Windcube Altitude [km Windspeed SPD_new if QC_ind < 0.20 Windprofiler(Matrix) - Windcube (10 min) CNT-Filter On (ge 3) UHF-Filter On (atdv It 0.35) (24 hour) Windcube - Aero w-thresholds: -2.0 ... 2.0 Windcube - LME w.turb.effects-thresholds: 5 / 1.00 / 0.75 Windcube (Leosphere) , QC 0..4 CNR >= -27· · · · · . . Year DOY: 2011 362 (c) DWD MOL-RAD 1 | 2011-05 (1.28) -2 ß 2 Windspeeddifference [m/s] Halo Windspeed SPD_new if QC_ind < 0.20 Windprofiler(Matrix) - Halo (^ 3 min) CNT-Filter On (ge 3) (24 hour) Halo – Aero UHF-Filter On (stdv It 0.35) w-thresholds: -2.0 ... 2.0 w.turb.effects-thresholds: 5 / 1.00 / 0.75 StreamLineLidar (HaloPhotonics) , QC 0..4 CNR >= -27 [60 Altitude [km **DOY 362** Year DOY: 2011 362 (c) DWD MOL-RAD 1 | 2011-05 (1.28) 0 -2 0 Windspeeddifference [m/s] 2 -4

Height Above Ground Level (Km) -2.33 Ground Level (Km) \sim \sim 2.14 2.33 \sim ~ 1.95 \sim 2.14 \land 1.76 4 1.95 A 1.58 44 A 1.39 Height Above N TWP 482 1.76 ilian: 362 1.20 ate: Dec 28, 2011 rt-1.58 ocal: 20:21:59 1.01 TC: 20:21:59 0.82 1.39 ode: WA / 2 LIN TWP 482 irection: South-East 0.64 zimuth: 133.00 dea 1.20 Julian: 362 evation: 74.80 deg 0.45 Date: Dec 28, 2011 -10 -8 -6 -4 -2 ź. 1.01 Velocit Local: 12:07:02 ba 2.33 Height Above Ground Level (UTC: 12:07:02 0.82 2.14 Mode: WA / 5 0.64 1.95 Direction: South-West \rightarrow 1.76 uth: 223.00 deg Azh 0.45 $\Delta \phi$ Elevation: 74.80 deg 1.58 2 -1 Velocity (m/s) Æ 1.39 IN TWP 482 ulian: 362 Δ 1.20 late: Dec 28, 2011 Д Radar influenced by 1.01ocal: 18:41:07 /TC: 18:41:07 \sim 0.82 ground clutter in the Iode: WA / 2 virection: South-East 0.64 Δc zimuth: 133.00 deg 0.45 lowest heights levation: 74.80 deg -8 ż -10 -6 -4 -2 0 6 Velocity (m/s)

(Preliminary) Results

- All wind lidars are close to 482 Mhz Windprofiler and radiosoundings
- There are sometimes differences to NWP model output
- In April/May there was a bias in windcube WLS70 wind speed (0.4..0.5 m/s) with Windprofiler as reference, in November/December no bias were found for wind lidars
- Comparisons show ground clutter effects of Windprofiler?
- The scanning lidars show similar performance

Examples \rightarrow

Lidar ranges compare to meteorological conditions

WLS200S: November 23 to December 20 2011

Frequency of maximal range

Contents

- \Rightarrow Motivation
- ⇒ Lindenberg GRUAN Site and Remote Sensing Systems
- ⇒ Campaign Structure and Methods
- ⇒ Preliminary Results

\Rightarrow Conclusions

- Intercomparison campaign provided a comprehensive data set over different seasons
- All wind lidars are close to 482 Mhz windprofiler and radiosoundings (< + 0.2 m/s and < 0.8..1.0 m/s in RMS-diff)</p>
- Comparison campaigns useful for new instrumentation, some bugs/problems could be identified and fixed
- Data coverage of wind lidars more than 90% up to 500 m height (even in fall) and complement the wind profile monitoring from ground to LS (lowest level 482 MHz RWP: 448 m)

Thanks for attention

For discussion

	StreamlineLidar HaloPhotonics (KIT)	Windcube WLS200 Leosphere	Windcube WLS200S Leosphere		
Manufactured by	Halo photonics	Leosphere	Leosphere		
Provided by	Karlsruhe Institute of Technology (KIT)	GWU-Umwelt- technik GmbH	Leosphere		
Wavelength	1,5 µm	1,5 µm	1,55 µm		
Max. range (of the provided Lidar)	3 km	6 km	6 km		
Beams configuration	LOS mapping	Four beams	LOS mapping		
Scan modes	Stare, VAD, RHI, DBS		Stare, VAD, PPI		

Windlidar Inter Comparison Campaign 2011

2011	March	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Jan 2012
						Halo (8/8/11)	Halo 13/9/11	Halo 3/1	Halo 1/11	Halo	Halo
						VAD 7 min		DBS 15 sec		VAD 3 min	
		WLS200 (20/4/11)	WLS200	WI 670				WLS200 (20/10/11)	WLS200	WLS200	
			WLS70	WLS70					WLS200S (23/11/11)	WLS200S	

Windlidar Inter Comparison Campaign 2011

Leosphere

PPI

VAD

≙

VAD - Velocity Azimuth Display (more than four directions) $\stackrel{\wedge}{=}$

DBS - Doppler-Beam Swinging (four beams)

WLS200

Frequency of maximal range

