239. Integration of Satellite Image and In-Situ Observations for Analysis of Meso-Gamma Scale Eddies in the Marine Stratocumulus Photographed by Pilots near the California Coast

Bradley M. Muller (bradley.muller@erau.edu)
Christopher G. Herbster (christopher.herbster@erau.edu)
Frederick R. Mosher (frederick.mosher@erau.edu)
Embry-Riddle Aeronautical University
600 S. Clyde Morris Blvd.
Daytona Beach, FL 32114-3900
http://wx.erau.edu

Aerial photograph of eddy over San Luis Bay (near Grover Beach and San Luis Obispo) 12 September 2006.

Fig. 4. Coastal eddy just west of Grover Beach, California, at approximately 18:28 UTC (11:28 PDT), September 12, 2006. Photo direction is toward the west. (Photo by “KB,” courtesy of Capt. Peter Weiss)

Fig. 5 GOES-West images from Sept. 12, 2006. Superimposed are wind/temperature data from the Pacific Gas & Electric (PG&E) network, from the Cal Poly (California Polytechnic State University, San Luis Obispo) pier, and wind data from the San Luis Obispo County Air Pollution Control (SLOAPCD) district. Half barbs represent wind speeds of 2.5 m/s. Whole barbs represent wind speeds of 5 m/s, and open circles represent wind speeds of less than 1.5 m/s. Initially the eddy moves with the northwesterly above-inversion flow toward the southwest, then moves with the northwesterly and westerly marine boundary layer flow toward the east. These motions suggest an eddy initiating within the inversion layer then cross-inversion mixing down into the marine boundary layer. Circulations clearly extend down to surface. The satellite image at 1830 UTC shows the same cloud as Figure 4 (orange arrow). At 1830 UTC the eddy feature has a length of 17 km, width of 9 km, and cloud-free eye of 2.5-3 km. Eddies appear similar to Von Karman vortices (e.g., Young and Zawislak 2006).

Terrain that produced the Grover Beach eddy.

Fig. 6 Terrain that produced the Grover Beach eddy, with the locations of relevant monitoring stations superimposed and numbered as follows. PG&E 1-3: 1) Pt. Buchon 2) Diablo Canyon Nuclear Power Plant meteorological tower 3) Davis Peak; 4) Cal Poly pier; 5) SLOAPCD Grover Beach site. Ridges extend to between 450 to 550 m (1500-1800 feet) MSL. Base map courtesy of San Luis Obispo County Planning Department, Geographic Technology and Design Section.

Observed sounding, 12 UTC 12 September 2006

Fig. 7 Observed 12 UTC (05 PDT) sounding from San Diego on September 12, 2006. A shallow marine layer is present; the marine layer at the eddy location near Grover Beach is most likely even shallower. Again, the highest terrain penetrates the base of the inversion, but not its top.

Observed sounding, 12 UTC 16 July 2006

Fig. 3. Observed 12 UTC (05 PDT) sounding from San Diego on July 16 2006. A strong inversion is present over a shallow shallow marine layer. At approximately 550 m, the highest terrain of Santa Cruz Island penetrates the top of the marine layer near 300 m, but does not extend to the top of the inversion layer near 800 m.

The vertical distribution of Froude numbers within the inversion layer ranges from 0.29 to 0.45, close to the “low Froude number” conditions for eddy formation investigated theoretically by Smolarkiewicz and Rotunno (1989).

GOES images of formation of Santa Cruz Island eddy, 16 July 2006.

Fig. 2 GOES-West visible satellite images from 17:00 UTC to 18:30 UTC on July 16, 2006. In this sequence, dry, cloud-free, sinking air in the lee of Santa Cruz Island can be seen moving laterally into the circulation followed by a tongue of clouds wrapping around and closing off the “eye.” The satellite image from 18:30 UTC shows the same cloud (orange arrow) as Figure 1. Analysis of this cloud indicates the width to be 9-10 km, length of 25 km, and cloud-free eye of 3 km.

Terrain that produced the Grover Beach eddy.

Fig. 6 Terrain that produced the Grover Beach eddy, with the locations of relevant monitoring stations superimposed and numbered as follows. PG&E 1-3: 1) Pt. Buchon 2) Diablo Canyon Nuclear Power Plant meteorological tower 3) Davis Peak; 4) Cal Poly pier; 5) SLOAPCD Grover Beach site. Ridges extend to between 450 to 550 m (1500-1800 feet) MSL. Base map courtesy of San Luis Obispo County Planning Department, Geographic Technology and Design Section.

Observed sounding, 12 UTC 12 September 2006

Fig. 7 Observed 12 UTC (05 PDT) sounding from San Diego on September 12, 2006. A shallow marine layer is present; the marine layer at the eddy location near Grover Beach is most likely even shallower. Again, the highest terrain penetrates the base of the inversion, but not its top.
Meteorological Analysis of the Grover Beach Eddy

Diablo Canyon Nuclear Power Plant and its meteorological tower.

Fig. 8. Aerial photographs of PG&E’s Diablo Canyon Nuclear Power Plant and surrounding terrain. Left photo: Looking north; 76 m meteorological tower can be seen just to the left of plant. Right photo: looking south. (Courtesy of John Lindsey, Pacific Gas and Electric Company).

Fig. 9 Meteogram during eddy passage

- Dotted curve is temperature (°C) from 76 m, dashed curve is from 46 m, and the solid curve is from 10 m above ground level (AGL).
- Top row of winds is from 76 m and the bottom row is from 10 m AGL. Half bars indicate approximately 2.5 ms⁻¹ and whole bars approximately 5 ms⁻¹. Time is in UTC.
- Temperatures show that eddy has a warm core with the inversion descending to the surface, providing observational confirmation of theoretical results from Smolarkiewicz and Rotunno (1989) and Schar and Durr (1997) suggesting warm core eddy formation.

Estimated Froude number for continuously stratified flow at ridgetop level during eddy formation.

\[F_r = \frac{U}{N \cdot h} \] (1)

\[N = \sqrt{\frac{g \cdot \partial \theta}{\partial z}} \] (2)

where \(U \) is the speed of the flow approaching a mountain, \(h \) is a characteristic mountain height (taken as 550 m, the height of Davis Peak), and \(N \) is the Brunt-Vaisala frequency

Table 1. Froude Number calculations from Equations (1) and (2) where the inversion layer wind from Davis Peak is U. The value in the table represents the average F from a mountain-top layer of both the Oakland (KOAK) and San Diego (KKNX) soundings. Since the soundings are from a single time (12 UTC), variations in the estimated Fr are due solely to variations in the Davis Peak wind speed. Values range from 0.35 to 0.45, again, close to the “low Froude number” conditions for eddy formation investigated theoretically by Smolarkiewicz and Rotunno 1989.

<table>
<thead>
<tr>
<th>Wind (Davis Peak)</th>
<th>Froude Number</th>
<th>Wind (Davis Peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1150</td>
<td>0.3</td>
<td>1150</td>
</tr>
</tbody>
</table>

Speculation on eddy formation mechanisms based on the literature of low Froude number (very stable) flow past isolated obstacles:

1. Mechanism 1:
 - Tilting of “backward rolling” (negative) horizontal vorticity into the vertical by vertical velocity differences between strong downslope flow directly in the lee of inversion-penetrating terrain and the weak or non-existent vertical motions on its periphery.

2. Mechanism 2:
 - Based on results of Epifanio and Rotunno (2005) and Schar and Durr (1997) highlighting the role of flow blocking at Froude numbers around 0.3.
 - Epifanio and Rotunno (2005) suggest upstream flow-blocking at the lower Froude numbers (greater stability) where more flow tends to go around rather than over an obstacle creates “an adjustment under gravity... caused by the presence of a topographic obstacle moving through the fluid” similar to vortices and flow reversal that might occur at the periphery “produced by a retracting piston in shallow-water theory.”

Concluding Remarks on the Grover Beach Eddy

- Eddy motions and temperature evolution from tower data are consistent with cross-inversion mixing of inversions air down into the marine boundary layer resulting in the cloud-free “eye” feature.
- It would not have been possible to resolve the eddy features without the special data obtained for this study from PG&E, the Cal Poly pier, and the San Luis Obispo Air Pollution Control District. No synoptic observing network stations were affected.
- Time series of temperature and wind at 76 m vs. 10 m suggests that the eddy is leaning forward with height.
- Eddy evolution from satellite imagery is consistent with theoretical results on “low Froude number” flow.
- Could eddy formation be a combination of both 1 and 2? Only a detailed model description or field study can answer this question.

References

