The ATM-Weather Integration Model: An Updated Perspective

Claudia McKnight*, Matt Fronzak, Mark Huberdeau, Eugene B. Wilhelm, IV, The MITRE Corporation/CAASD

1. The ATM-Weather Integration Model

Why ATM-Weather Integration?
- estimated 70% of delays are caused by weather and cost approximately $28B annually
- imperfect weather forecasts pose a challenge to ATM decision makers
- Weather Integration into decision support systems will:
 - Standardize the decision process, providing greater predictability
 - Allow full and continuous use of available weather data and forecasts
 - Provide consistent, efficient system support to local weather constraints
 - Increase efficiency across the NAS

The ATM-Weather Integration Diagram

The ATM-Weather Integration Model was originally described in the Federal Aviation Administration’s ATM-Weather Integration Plan V2.0 published in September 2010.

The diagram shows the flow of information, starting as pure weather data on the left and continuing through Translation (yellow box) where it is input into each of the NAS Constraint or Threshold Events, into Conversion (red box) where traffic is applied and NAS Impacts and State Changes are derived, and finally onto Decision Support (green box) where TFM solutions are developed.

The dashed vertical lines represent the permeable lines of responsibility (between NAS, FAA Parts, and FAA ATM), and the blue labels hanging off of each box show which NAS solution set is associated with each area. Lastly, the green boxes are a first cut at what information filters will be needed to convert Translation, Conversion, and Decision Support. Unlike information, requirements necessarily flow from right to left.

2. A Closer Look

Translation

Inputs

Outputs

CRA 3

CRA 2

CRA 1

WAF

Current ATM-Weather Integration Diagram

Proposed ATM-Weather Integration Diagram Update

The Proposed Update to the diagram does not change any of the fundamental concepts of weather integration. It primarily seeks to clarify certain aspects (the very permeable and ill-defined areas of responsibility, shown here as shades of yellow, red, and brown) and better define the likely data filters used in each step of the process (purple boxes shown in the associated green boxes).

Each Level of ATM-Weather Integration is referenced by the associated blue boxes, and verification of weather and translation was added to indicate what is likely to be very important, but as yet undetermined process. The respective times of information and requirements, and associated solution sets remain the same.

The current focus of translation is, and has been, the departure and en route domains. The Integrated Departure Route Planning (IDRP) concept being tested in the New York area is a good example of ATM impact conversion. The WAF/CRA is being considered for other en route concepts as well. In the area of threshold alerts and state changes there has been little development. The Flight Object concept is thought to be a good potential source of additional conversion data/filters.

3. Getting to the Next Level – Issues to Resolve

Notional View – The Evolution of Translation

Flight Object and the ATM-Weather Integration Concept

The first step in Conversion is to add known and proposed traffic to translated weather in order to determine NAS impact and state changes. However, in addition to traffic information, there is a variety of data or “filters” (many of which may be available through a Flight Object or similar capability) that will provide the next step in identifying the true nature of the impending impact, allowing more surgical ATM capability.

This enhanced rendering of impact can then be passed to decision support systems which can in turn apply additional filters, further enhancing the ability to develop more effective solutions.

Application in the Surface Environment

The integration provides a desirable, allowable, and out-of-limit condition may also be depicted on a runway traffic graph, allowing traffic managers and controllers better situational awareness when managing airport configuration.

The new step (box 2) is the application of known and proposed traffic to determine impact. Traffic managers will be able to use this information for traffic decision making. Eventually, this information will be combined with additional filters (as indicated earlier) to develop solutions to individual airport surface conditions, which often have ramifications across the NAS.