
Alex Pletzer, Dave Kindig, and Srinath Vadlamani (Tech-X) –
LibCF/GRIDSPEC

Paul Durack, Charles Doutriaux, Jeff Painter, and Dean Williams (LLNL) –
CDAT, CMIP5

Ryan O'Kuinghttons, Bob Oehmke (NOAA) –
ESMF

pletzer@txcorp.com

Jan 23 2012, AMS, New Orleans
Work funded by MoDAVE: DOE/SBIR DE-FG02-08ER85153

Interpolating climate data using CDAT

CDAT = Climate Data Analysis Tools

>Written in Python
>Understands data conforming to
Climate Forecast (CF) conventions
>Ultra Visualization (UV)-CDAT
brings together CDAT, VisIt, Paraview,
VisTrails, R, ...
>Run CDAT engine on Earth System
Grid to serve climate data

>>> import cdms2
>>> f = cdms2.open('./contrib/ZonalMeans/Test/test_data.nc')
>>> f.listvariables()
['bounds_depth', 'bounds_time', 'bounds_y', 'bounds_x', 'O2']
>>> o2 = f('O2')
>>> o2.listattributes()
['units', 'long_name', 'name']
>>> o2.units
'mol/m^3'
>>> o2.shape
(12, 5, 150, 180)

http://www2-pcmdi.llnl.gov/cdat

CDAT can easily be extended, leveraging a
vast body of third party Python modules

• CDAT builds many packages including scipy,
ipython, Pmw, PyQt, Extending CDAT can be
as simple as typing “python setup.py
install”

• Examples:
– mpi4py (Message Passing Interface for Python)
– petsc4py (sparse matrix solvers, non-linear

equations, time steppers, ...) [Lisandro Dalcin]
– PyGNL
– PyLog (PROLOG engine)
– nltk (Natural Language Toolkit)

Our focus here is interpolation

• Explore different interpolation options provided
within CDAT

– Module regrid2
• Module gsRegrid: new in CDAT 6.0
• ESMP: Earth System Modeling Framework

(ESMF) interpolation (not part of CDAT)

• Evaluate each approach using native Coupled
Model Intercomparison Program Phase 5 (CMIP-
5) data from various models

• Source grids are typically not latitude-
longitude

Some of the challenges of CMIP-5 and other grids

• Models use non-uniform grids to avoid numerical
problems and over-resolution near poles

cubed-sphere

Tripolar, Murray '96

Small degree of
unstructuredness

Rotated pole

Interpolation must be able to handle...

• Extremely flat cells near poles
• Recognize longitudes as periodic coordinate
• Nodal versus cell centered data
• Gap of tripolar grid near pole

Currently available options for regridding
in Python/CDAT

• regrid2 (in CDAT 5.2)
– 2D, horizontal grid is a cross product of axes

• SCRIP (in CDAT 5.2)
– 2D, curvilinear grids,

conservative/linear/spline. Lacks
documentation (was not able to use)

• LibCF
– Multi-dimensional but only linear (in CDAT

6.0). Interface to C library using ctypes.
• ESMF/ESMP

– 2D/3D, option between linear, conservative,
Python interface recently made available by
Ryan O'Kuinghttons. Interface to C ESMF
(ESMC) via ctypes.

LibCF regridding/interpolation
• Linear interpolation using nearest neighbors only

– No over-shooting
– Straightforward to parallelize

• Pseudo-Newton search of position in index space
– Only one iteration required for uniform, rectilinear grids

• Line search to improve convergence
• Use previous index location as initial guess when

regridding from structured to structured grids
• Handles dateline, can be anywhere
• Pole remains a problem
• Has support for masking

map

Pathological case has zero
cell volume in lon-lat space

How LibCF deals with masking

• Will do its best to interpolate in the presence of masked
(or invalid) values

• 3 cases:
– All values in a cell are valid
– Some invalid values

• Switch from quadrilateral/hexahedron to
triangle/tetrahedron interpolation

All nodal values
are valid

One missing value
interpolation is
still possible

Not possible to
interpolate

Invalid node

How to call LibCF regrid from CDAT
from cdms2 import gsRegrid
...
.... src_y, src_x can be curvilinear coordinates
or axes, ditto for dst_y, dst_x,
takes numpy or cdat cdms2 type variables
src_grd = [..., src_y, src_x]
dst_grd = [..., dst_y, dst_x]

constructor
rg = gsRegrid.Regrid(src_grd, dst_grid,
 mkCyclic = False,
 handleCut = False,
 src_bounds = None)

compute interpolation weights
rg.computeWeights(nitermax=20, tolpos=0.01)

interpolate src_field, result is dst_field
rg(src_var, dst_var)

LibCF: 2D interpolation was tested on 23
ocean models

... etc.

LibCF: GFDL model was made cyclic and
additional row was added to fill in gap

Pole is well
resolved

Tripolar grid, no
Gap

No dateline
problem

LibCF: interpolation of CNRM model shows
small gap

Pole less well
resolved

Small gap

Interpolation error after interpolating back
onto the source grid

• Error is mostly near the coast line

LibCF: 3D test cases

• Takes ~ 20-60 seconds (only 10 levels)
• MIROC hi-res model

Summary
• Highly distorted lat-lon grids present

challenges for interpolation software
– Cuts
– Jump in longitude
– Pole

• LibCF interpolation has benefited from being
exposed to “real” datasets

• Timings: gsRegrid takes ~ few seconds for
2D, ~40 seconds for 3D (need to understand
why 3D takes so much longer)

• Can apply domain decomposition and MPI
parallelization to accelerate weight
computation (embarrassingly parallel)

• Lack of conservation ~ 2%. Can be “fixed”
globally by multiplying weights by a constant
factor

Summary (2)

• ESMF interpolation likely to offer best
solution when conservation is required

– Actively working with ESMF developers to
extend Python API

– Work by Peggy Li [ESMF Offline Regrid
Generator Performance Comparison with
SCRIP] shows good scalability and
accuracy for atmospheric model

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

