

A C-Band, Dual-Polarimetric Radar Analysis of a Tornadic Mesoscale Convective System: The 25 May 2011 Northern Illinois and Indiana Tornado Event Anthony W. Lyza¹, Raquel Evaristo¹, Eric Lenning², Sarah K. Mustered¹, Travis J. Elless¹, Sarah A. Al-Momar¹, Ian R. Lee¹, Teresa M. Bals-Elsholz¹,

- All tornadoes occurred without severe thunderstorm or tornado warnings

- Vertically-stacked low located over central Plains
- northeast across Missouri and Illinois during overnight and early morning hours, reaching NE Illinois mid-morning
- QLCS became tornadic across E Illinois and NW Indiana
- NW Indiana
- Four tornadoes were studied, 1 EF0 (Morocco, IN), 2 EF1s (NW of

shaded and green dashed mixing ratio, red dashed isotherms

Bart J. Wolf¹, Kevin H. Goebbert¹, Adam J. Stepanek¹, and Craig A. Clark¹ ¹Valparaiso University, Valparaiso, Indiana ²National Weather Service Forecast Office, Chicago/Romeoville, Illinois

	CROSS-CORRELATION COEFFICIENT (ρ_{hv}) Observations
•	Minimum in ρ_{hv} associated with reflectivity notch of EF2 tornado near Mt. Ayr, IN, on 1423 UTC plot Marginally low ρ_{hv} values, other noise, and rather
	significant distance from radar preclude reaching conclusion of the source of the minimum in notch
•	Additional coherent minimum in ρ_{hv} appears behind QLCS leading edge at1423 UTC and 1430 UTC
	 → Minimum ρ_{hv} associated with reflectivity weakness
	→Given no circulation or tornado associated with feature, cause of ρ_{hv} minimum is unclear
Acknowledgements/References	
Funding of this work is through MIT Lincoln Laboratory's NEXRAD Enhancements Program for the FAA.	
Barker, Llyle, 2006: A Potentially Valuable WSR-88D Severe Storm Precursor Signature in Highly Dynamic, Low CAPE, High Shear Environments. Preprints, 23 rd Conference or Severe Local Storms, Saint Louis, Mo, Amer. Meteor. Soc.	

Koch, Steven E., Christopher O'Handley, 1997: Operational Forecasting and Detection of Mesoscale Gravity Waves. Wea. Forecasting, 12, 253-281.