
5A.2

Fun with Google Fusion Tables – A Story about Applying An Imperfect New Technology to Demanding
Science Data Problems

Roland H. Schweitzer*
Weathertop Consulting, LLC, College Station, Texas

Steve Hankin, Ansley Manke

NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Heather Koyuk, Karl Smith, Kevin O'Brien
JISAO, University of Washington, Seattle, Washington

1. INTRODUCTION

Many technology companies build and release

software and services for public use. Java from Sun
and now Oracle; Maps and Google Web Toolkit from
Google; and Eclipse with contributions from many
commercial enterprises are a few technologies with
commercial roots that we have used successfully to
build the Live Access Server. The Live Access Server is
well-established Web-application software system for
display and analysis of geo-science data sets. The LAS
group has long been active in the development of tools
to facilitate easy, Web-based model inter-comparison
and other visualizations of earth science data. The LAS
software, which can be downloaded and installed by
anyone, gives data providers an easy way to establish
services for their on-line data holdings so their users
can make plots, create and download sub-sets in a
variety of formats, and compare and analyze data. We
are continuously evaluating and trying technology to
see if we can use it to improve the services we provide
around our core mission of making climate data
available to scientists and the public. Google Fusion
Tables is a new technology released for use by the
public and we have begun the process of evaluating if
and how we can use Fusion Tables and the services
provided around them. This is a story both about
technology: what it is and how it works, how we used it,
the advantages it offers and where it falls short and it is
a story about process: when and how do we integrate
new technologies, when do we say no and how do we
engage with the developers and the community to help
it improve.

Initially, a Google Fusion Table looks like a
cross between a database table and spreadsheet in the
cloud. Data arranged in rows and columns can be
uploaded into a table from local files in a variety of
forms, from a Google document or using an API that

*Corresponding author address: Roland H. Schweitzer,

Weathertop Consulting, LLC, 2802 Cimarron Ct,
College Station, TX 77845. E-mail:
weathertop.consulting@gmail.com

inserts data similarly to making inserts into an RDBMS.
But, unlike the basic spreadsheets and RDBMS Fusion
Tables layer additional services on top of the data to
identify columns which contain location data and to
provide map displays and a spreadsheet-like browser-
based user interface. The data organization matches
closely in-situ climate observation data for which we
build display and analysis systems. We began our
experiments using data available from the Observing
System Monitoring Center (O'Brien, 2004, 2007, 2008)
by extracting the sub-set from the RDBMS and
manipulating it in a standard spreadsheet to create
additional columns we needed to create the desired
Google maps displays.

One of the first and most obvious advantages
behind Google Fusion Tables in the tremendous
amount of server-side processing that can be brought to
bear on the data to create sub-sets, perform
calculations and to build interactive Google-maps
compatible overlay tiles with representations of the data
which can displayed on a map in the browser and can
interactively link back to the underlying table row.

Of course, all of that processing is not free and
there are limitations both on the amount of data that can
be uploaded and stored and the number of different
layers created and displayed on a map. And while
designed to be used with general location-based data
collections in many disciplines, some features which
seem obvious for Earth-science data are lacking or
difficult to archive.

The technology is new so learning how to use
it and discovering what it could and could not do
involved not only reading the available documentation it
involved engaging with the community. One of the
criteria for evaluating a new technology is the how
active and engaged the community is with developers
and other users.

Our initial experimental with the technology
was very promising. Uploading, sharing and displaying
were easy. And when combined with some basic
JavaScript programming we were able quickly build
some high quality, interactive map displays of our data
sub-set. However, there are still many questions to

answer about how we can integrate this technology into
scientific work-flows for real-time data collections. Our
presentation will provide details about the entire story,
the technology and the process we undertook to use it.

2. PREPARING THE FUSION TABLE

You can upload a batch of data into a table

from a Google Doc spreadsheet, an Excel spreadsheet
or an CSV text file. To map a Fusion Table one or
more columns must contain location information. The
information can be an address or place name that
Google can geo-code, a hunk of KML or latitude and
longitude values. We have latitude and longitude
values which we use to location each platform at each
time.

In order to make a location column and to
make up the columns we needed in order to be able to
display the data as we wanted with drifter locations and
tails, I loaded up into a spreadsheet applied some
functions to the existing columns.

The first thing I did was pull the latitude and
longitude into a single column called location by pulling
together the latitude and longitude columns with this
function =(C2 & "," & D2). The "&" is how you
concatenate strings in a spreadsheet.

Turns out, you don't have to do this. The
Fusion Tables interface allows you to tell use a "two
column location" by choosing Edit - > Modify Columns
and then associating two columns that contain the
latitude and the longitude in the dialog that appears.

Once you have selected the option to modify
the columns you will be presented with a dialog from
which you can select the columns that contain the
latitude and longitude columns.

3. WORKING WITH THE DATA

Once all of the data are in the table, it’s easy

to create a map that shows every platform at every
location for every time. As you can imagine, such a
map makes quite a mess. The density of the points
makes it impossible to identify individual cruise tracks or
where a particular platform began sampling and were it
stopped sampling for this time period.

6. CONCLUSIONS

We knew that we wanted to display the drifter

tracks as lines and to show the final location with a dot.
Using the some KML as text in one of the columns you
can define polygons in a table. So to represent the tail,
we decided to create a single line segment that pointed
from the current row in the table back to the previous
row (and the final position just pointed to itself). So with
the table sorted by platform id and then newest to
oldest, the spreadsheet function necessary to build the
fragment of KML looks like this:

=IF (A2=A3,("" & D3 & "," & C3 &" "& D2 & ","

& C2 & ""),"" & D2 & "," & C2 &" "& D2 & "," & C2 & "")

which says essentially, if the platform id of the

current row is equal to the platform id of the previous
row, then the line segment goes from the location in the
current row (C3, D3) to the location in the previous row
(C2, D2) and if not it's a new platform so it goes from
the current row to itself. And the very first data row, I
filled in my hand with the segment going from itself to
itself.

=("" & D2 & "," & C2 &" "& D2 & "," & C2 & "")

With the KML fragments in place, you can now

view each drifter track as a line segment, but it is still
difficult to distinguish the individual tracks. Once way to
help make the individual tracks easier to see would be
to color each a differently by adding a column
containing the RGB values for the color and repeating
that color in each row that made up a particular
platform. It was surprisingly difficult to come up with an
algorithm that yielded a good mix of colors and we
eventually gave up on improving the mix of colors on

Figure 2 Every platform at every location for

every time.

Figure 1 You can select columns

representing latitude and longitude.

the map.

4. USING THE MAPS API AND THE FUSION TABLE
LAYER

In the user interface provided, you can only
map one "location" at a time, so you cannot
simultaneously show the KML fragments that describe
the tail and the dots that show the sample locations.
Even if you could it would be a really big mess with the
dots all over the line segments. What we want to
present is the drifter's current location and its tail. I
used a spreadsheet function to create a column which
was blank everywhere except the final location of the
platform This function =IF(A3=A4,"",I3) says if it's the
same as the next one, blank, if the next one is different
mark the final position. But, when I plot that column in
the UI I only get a few of the final locations. I don’t
know if this is a bug making the map tiles, but I found
that if I put the final positions in a separate table I could
map them using the Maps API and get the desired
effect.

Using the SQL API you can request data from
your table and using the V3 Maps API you can get
Google to create and deliver map tiles with plots of the
data that overlay on the map. And not only that, the
layers are active and accept clicks which will pop up an
info window. And not only that you can register a click
listener on the layer which gets the location clicked, the
table row at that location and an info window object you
can populate with HTML.

And since the row contains the ID of the
platform, it is possible to place a button in the HTML
that will do a query that hides all of the other platforms
and displays only the tail and final position of the
platform selected by the click.

Figure 4 Clicking on a line give the data for that

time and shows a button to hide the other

platforms.

Figure 5 Pushing the hide button shows only the

selected drifter.

7. REFERENCES

O'Brien, K., K. McHugh, G. Vecchi, E. Harrison, S.
Hankin, and A. Manke (2004): The Observing System
Monitoring Center: A Tool for Evaluation of the Global

Figure 3 The individual drifters shown as line

segments.

Ocean Observing System. In Proceedings of the 20th
International Conference on Interactive Information and
Processing Systems (IIPS) for Meteorology,
Oceanography, and Hydrology, 2004 AMS Annual
Meeting, Seattle, WA, 12–15 January 2004, paper
P1.35.

O'Brien, K.M., S. Hankin, R. Schweitzer, K. Kern, B.
Smith, T. Habermann, and N. Auerbach (2007): An
introduction to the Observing System Monitoring
Center. In Proceedings of the 23rd International
Conference on Interactive Information and Processing
Systems (IIPS) for Meteorology, Oceanography, and
Hydrology, 87th AMS Annual Meeting, San Antonio, TX,
14–18 January 2007, Paper 2B.5

O'Brien, Kevin ,S. Hankin , R. Schweitzer , K. Kern , M.
Little ,T. Habermann , N. Auerbach J.Cartwright J.
LaRocque (2008): MONITORING AND ANALYZING
THE GLOBAL OCEAN OBSERVING SYSTEM WITH
THE OBSERVING SYSTEM MONITORING CENTER
in Proceedings of the 24th International Conference on
Interactive Information and Processing Systems (IIPS)
for Meteorology, Oceanography, and Hydrology, 88th
AMS Annual Meeting, New Orleans, LA, 20–24 January
2008, Paper J1.6

