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Abstract 

Assimilation of various forms of 
satellite data into numerical weather 
prediction models has led to a significant 
increase in global forecast skill during the 
past 25 years. Only recently have these efforts 
begun to be transitioned to convective-scale 
forecasts and initial research has shown 
promising results. One particular challenge in 
convective-scale data assimilation is properly 
identifying the location and intensity of cloud 
properties and the characteristics of the 
surrounding environment prior to initiating 
forecasts. To examine whether or not hi-
resolution satellite data can provide value 
added information, this research assimilates 
cloud and humidity variables derived from 
Geostationary Operation Environmental 
Satellite (GOES) Imager cloud property 
retrievals.  

The hypothesis posed by this research 
is that satellite derived cloud properties can 
provide information on the atmospheric state 
within and surrounding clouds that will 
enable an improved model analysis. 
Traditional atmospheric observations are 
assimilated into the WRF-ARW model using 
a 36 member Ensemble Kalman Filter (EnKF) 
assimilation technique over a continental U.S. 
domain at a 15 km resolution. Cloud and 
humidity variables are then assimilated using 
the same technique on a 3 km nested grid 
domain centered around a severe weather 
event on 10 May 2010.  
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Mesoscale data assimilation begins at 

1200 UTC and continues until 2100 UTC 10 
May with the cloud variables assimilated at 
15 minute intervals within the nested grid 
from 1800 to 2100 UTC. The impacts of 
satellite data assimilation are assessed by 
comparing two identical model experiments: 
one with (CLD) and one without the satellite 
data assimilated (NOCLD). 

WRF-DART assimilates ~90% of the 
available data with a combination of cloud-
free and cloudy observations near the surface 
with primarily cloud-free data being 
assimilated aloft. Observation diagnostics 
indicate that assimilation of these data 
noticeably reduces 850 hPa bias and root 
mean square error (RMSE) for cloud liquid 
water content and, to a lesser extent, relative 
humidity after 2000 UTC. Comparing 
NOCLD and CLD analyses of QCLOUD at 
2045 UTC for several pressure levels shows 
several locations where differences in the 
QCLOUD analyses exist. Interestingly at 900 
and 850 hPa, the difference patterns in eastern 
Oklahoma seem to match the wave patterns 
present in the clouds observed by GOES 
visible imagery at this time. This is due to a 5-
10 km spatial shift in the location of the 
clouds depicted in the CLD analysis 
compared to the NOCLD analysis. The 
changes to the 2100 UTC analysis fields 
generate differences in one hour forecasts of 
simulated reflectivity forecasts, but neither 
model appears skillful over the other at this 
time. These results represent a preliminary 
overview of ongoing research, which should 
provide a better understanding of the potential 
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for assimilating cloud properties using EnKF 
methods.  
 
1. Introduction 

The Warn-on-Forecast (WoF) project 
was developed with the goal of improving 
convective-scale forecasts to the degree where 
forecasters will have confidence to issue 
warnings based in part on numerical weather 
prediction (NWP) output (Stensrud et al. 
2009). NWP-based warnings require that the 
forecast be of high quality, resolution, and 
reliability. One emphasis of the WoF project 
is to develop new assimilation techniques to 
take advantage of the vast new array of 
observations coming online during the next 
five years (Stensrud et al. 2009). Significant 
advances in high-resolution NWP models 
have been made during the past decade by 
studying the impacts of assimilating radar 
reflectivity and velocity data. These data 
provide high temporal and spatial resolution 
observations of convection and near-storm 
environments and have been shown to 
substantially improve model analyses and 
short-term severe weather forecasts (e.g. 
Dowell et al. 2010). While radar data has 
proven to be a valuable asset for severe 
weather forecasting, satellites represent 
another source of remote sensing data that can 
provide additional information on cloud 
properties and the surrounding environment.  

The Imager on the GOES satellites 
observes one visible and four infrared 
channels at horizontal resolutions of 4 km or 
less at a temporal resolution of less than one 
hour over the continental United States 
(CONUS) (Menzel and Purdom 1994). The 
GOES satellite also includes a sounder that 
observes 19 visible and infrared channels 
providing some information on the vertical 
characteristics of atmospheric temperature 
and moisture (Schmit et al. 2002). Data from 
both sensors can also be used to ascertain the 
location and properties of clouds in the 
atmosphere (Minnis et al. 2008a, Schreiner et 

al. 2001). One advantage of using satellite 
data in this fashion is that certain clouds may 
form into thunderstorms are visible from 
satellite imagery before they can be observed 
on radar since small cloud droplets (r < 100 
µm) are relatively insensitive to scattering in 
the microwave spectrum (! = 10 cm). These 
cloud properties can be used to adjust model 
parameters to better match observations and 
conversely remove clouds and precipitation 
from the model analysis if clouds are not 
detected by the satellite data (e.g. Yucel et al. 
2002, 2003; Benedetti and Janiskova 2008; 
Lauwaet et al. 2011).  
 Using cloud properties retrieved from 
GOES Imager data at 30 minute intervals on 
10 May 2010, we assess the potential impact 
on short term severe weather forecasts over 
the Southern Plains. The goal is to show that 
satellite derived cloud information can add 
useful information to the model analysis 
potentially leading to improved forecasts. 
With the upcoming launch of GOES-R in 
2015 and the Advanced Baseline Imager 
(ABI) these cloud products will become 
available at higher spatial and temporal 
resolutions comparable to that available from 
operational radar data (Schmit et al. 2005). 
Furthermore, the increased spectral resolution 
of the GOES-R ABI allows for more accurate 
cloud property retrievals and well as 
additional cloud products over what is 
currently available. Thus, the potential for 
using satellite data for high-resolution severe 
weather forecasts will only increase in the 
future.  
 
2. Data and model characteristics  
a. GOES Satellite Data 
 GOES satellite cloud properties are 
generated using a retrieval algorithm 
developed at the Langley Research Center 
(LaRC) that combines the Visible Infrared 
Solar-Infrared Split-Window Technique 
(VISST), the Solar-infrared Infrared Split-
window Technique (SIST), and the Solar-



 3 

infrared Infrared Near-infrared Technique 
(SINT) (Minnis et al. 2008b; 2011). The first 
method is used during the day when visible 
spectrum data are available, otherwise a 
combination of the latter two are used. 
Hereafter, the combined retrieval algorithm is 
simply referred to as VISST. This algorithm 
uses the visible (0.65 µm), solar infrared (3.9 
µm) and infrared (10.8 12.0 or 13.3 µm) 
channels sampled by the current generation of 
the GOES Imager (Menzel and Purdom 1994; 
Schmit et al. 2001; Minnis et al. 2008) to 
determine the presence of clouds. The 
retrieval algorithm begins by performing a 
simple comparison of observed 10.8 µm 
brightness temperature with a clear sky 
background. If the observed temperature is 
colder, then that pixel is defined as cloudy. If 
it is warmer, additional tests are performed 
that include another IR test (12.0 or 13.3 µm) 
and difference test between the solar-infrared 
channel (3.9 µm) and infrared (10.8 µm) 
channels, and if visible data are available, a 
simple test to determine if visible reflectance 
is greater than the expected clear-sky values.  

If all tests are passed, that pixel is 
defined as cloudy. For all pixels determined 
to be cloudy, the algorithm uses a 4-channel 
radiative transfer model to match the 
calibrated radiances to theoretical models of 
water and ice-crystal size distributions. 
Atmospheric parameters necessary to solve 
for skin temperature, cloud height, and 
radiance attenuation corrections are taken 
from NWP analysis fields. Clear-sky 
radiances, surface emissivities and surface 
classifications necessary for the retrievals are 
obtained from the Clouds and Earth’s Radiant 
Energy System (CERES) instrument located 
on either the Terra or Aqua polar orbiting 
research satellites. A full description of this 
algorithm is provided by Minnis et al. (2008b) 
and Minnis et al. (2011).  
 Validation of GOES cloud top and 
base heights with surface-based cloud radar 
and lidar observations at the Atmospheric 

Radiation Measurement (ARM) site near 
Lamont, Oklahoma found that GOES cloud 
heights retrieved during daytime hours are 
generally accurate to within ±1.0 km with a 
slight low bias noted (Smith et al. 2008). 
Uncertainties are greatest for thin cirrus 
clouds in the upper troposphere and smallest 
for single layer low-level stratus. Base heights 
for deep convection are also sometimes too 
high since lower level information cannot be 
ascertained due to the very opaque nature of 
these clouds. Converting ±1 km to pressure 
coordinates, uncertainty becomes 
approximately ±50 hPa in the mid-
troposphere.   
 We use cloud top and cloud base 
pressure (CTP, CBP) between 1800 and 2100 
UTC retrieved at 30 minute intervals from the 
Imager on GOES-East (GOES-13) over the 
Southern Plains domain to generate a dataset 
of cloud and humidity variables that can be 
assimilated into NWP models. GOES data 
resolution is reduced to 3 km by sampling 
every third pixel prior to assimilation as 
higher resolution features would not be 
resolved by the 3 km resolution model grid 
used here. To better simulate the temporal 
resolution that will be available with GOES-R 
data, 30 minute satellite products are 
interpolated to generate data at 15 minute 
time intervals prior to deriving the cloud 
microphysical properties and humidity data 
for assimilation.  
  
b. WRF-DART characteristics  

The NWP model selected for this data 
impact study is the Advanced Weather 
Research and Forecasting (WRF-ARW) 
model version 3.2.1 using the Thompson 
microphysics scheme (Skamarock et al. 2008; 
Thompson et al. 2004).  A 15-km domain 
covering most of the contiguous 48-states 
(CONUS) is defined with 51 vertical levels 
stretching from the surface up to 50 hPa. A 
parallel filter from the Data Assimilation 
Research Testbed (DART) software 
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assimilates atmospheric observations 
including cloud properties, into WRF using an 
Ensemble Kalman Filter (EnKF) technique 
(Anderson et al. 2009). The primary 
advantage of this approach is that it provides 
a flow dependent and dynamically evolving 
estimate of the background error covariance 
for assimilated observations (Kalman 1960). 
Initial and boundary conditions are obtained 
from the 1200 UTC 10 May 2010 NAM 
model forecast fields. The data assimilation 
cycle starts at 1200 UTC 10 May 2010 and 
continues for 9 hours until 2100 UTC using 
traditional surface, marine, aircraft, and 
radiosonde observations. More detailed model 
characteristics used for the mesoscale 
assimilation can be found in Jones and 
Stensrud (2012). Using the mesoscale 
analyses as boundary conditions, a 3 km 
nested domain is generated over the area of 
the most intense observed convection with 
ensemble forecasts extending out to 0000 
UTC 11 May. Two nests are created for 
comparison one with (CLD) and one without 
(NOCLD) satellite cloud data assimilated. For 
these data, the horizontal localization radius is 
12 km and the vertical localization 4 km, 
similar to that currently used for radar data 
assimilation.  

Since it is difficult to assimilate cloud 
properties such as CTP and cloud liquid (and 
ice) water paths (CWLP, CIWP) directly into 
NWP models, we generate 3-D arrays for 
atmospheric relative humidity (RH), cloud 
liquid water (QCLOUD), cloud ice (QICE), 
graupel (QGRAUP) and rainfall (QRAIN) 
using the same horizontal resolution as the 
satellite data and set the values according to 
the cloud observations. If no clouds are 
detected, then QCLOUD, QICE, QGRAUP, 
and QRAIN are set to zero for the 
atmospheric column at that location. RH 
remains defined as missing. Where GOES 
retrieves CTP and CBP information, RH is set 
to 100% between CTP and CBP to indicate to 
the model the presence of saturated air within 

the atmospheric column where a cloud is 
detected. CLWP is not assimilated in this 
research as the appropriate forward operator 
necessary to related total column CLWP to 
the vertical profile of CLW (and cloud ice) 
remains in development. Locations where 
satellite data are not available or otherwise do 
not pass the thresholds defined above remain 
set to missing. The “new” relative humidity 
and cloud microphysical variables are then 
assimilated into WRF-DART in the nested 
grid domain between 1800 and 2100 UTC at 
15 minute intervals. The NOCLD ensemble is 
generated in the same manner, but with the 
new humidity and cloud variables set to 
evaluate-mode only.  
 
3. Event Summary 
 Severe thunderstorms form in the 
afternoon and evening of 10 May 2010 
associated with the passage of a shortwave 
trough across the Southern Plains, with 
dozens of damaging wind, severe hail, and 
tornado reports occurring between 2100 UTC 
10 May and 0200 UTC 11 May (Fig. 1a). A 
surface low-pressure center deepens as it 
moves eastward through southern Kansas, 
trailing a dryline southward into central 
Oklahoma as shown at 2100 UTC (Fig. 1b). 
Ahead of the dryline, surface dewpoint 
exceeds 20 °C and south-southeasterly surface 
winds > 10 m s-1 blow over a large portion of 
central and southeastern Oklahoma. Surface 
temperatures range from ~34 °C in 
southwestern Oklahoma to below 20 °C in the 
northeastern part of the state where low 
clouds exist.  

At higher levels, a strong wind field (> 
40 ms-1 at 500 hPa) results in storm motions 
in excess of 25 ms-1 creating more than ample 
storm relative helicity for tornadic supercells 
(0-3 km SREH > 500 m2 s-2, Fig. 1c, d). 
Convective available potential energy 
(CAPE) also exceeds 2500 J kg-1 throughout 
much of central and southeastern Oklahoma 
(Fig. 1d). Supercell thunderstorms develop 
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ahead of the eastward progressing dryline 
initially in southern Kansas around 1800 UTC 
and in central and southern Oklahoma by 
2000 and 2200 UTC, respectively. A second 
line of supercells initiates nearer the dryline 
itself after 2300 UTC and also moves 
eastward before moving into southeastern 
Oklahoma by 0100 UTC 11 May.  
 Visible satellite imagery from GOES-
13 at 2045 UTC (no 2100 UTC image is 
available) shows a large area of low-level 
stratus clouds in eastern Oklahoma and the 
adjacent regions of Kansas and North Texas 
(Fig. 2). Within this cloud field, northwest to 
southeast oriented wave features are evident 
in addition to what appears to be some 
southwest to northeast cloud streaks above 
this layer in northeastern Oklahoma. Clear 
sky and dry air characterize the environment 
behind the dryline in western Oklahoma with 
a cumulus field corresponding to developing 
convection also present. WSR-88D radar 
reflectivity data from KTLX (Twin Lakes, 
Oklahoma) show that several convective cells 
have developed north of 36°N by this time 
with a corresponding cirrus shield stretching 
into Kansas interacting with ongoing 
convection there (not shown).  
 
 
4. Data Assimilation 
a. Data Location 
 Between 1800 and 2100 UTC, nearly 
781,000 observations of QCLOUD, QICE, 
QGRAPUL, QNRAIN, and RH are 
assimilated into the nested domain (Table 1). 
For cloud microphysical and RH variables, 
approximately 90% and 60% of the total 
number of data points are successfully 
assimilated (Table 1). RH represents the 
smallest portion since they are only 
assimilated when the satellite detects a cloud 
at a particular set of levels, whereas instances 
of no cloud detection are much more frequent. 
Remaining data fail to satisfy outlier 
thresholds specified within DART. These data 

are assimilated within a 3-D volume from 
near the surface (950 hPa) up to 
approximately the tropopause at 200 hPa. 
Within this volume, both the areal coverage 
and the vertical extent of cloud and no-cloud 
features can be discerned. To illustrate this 
point, assimilated data at 2045 UTC are 
plotted at pressure levels of 900, 850, 700, 
and 500 hPa (Fig. 3). At 900 hPa, DART 
assimilates a large area of RH=100% data 
points over much of eastern Oklahoma, 
western Arkansas and southwestern Missouri 
with each point denoted as a diamond in 
Figure 3a. These data correspond well to the 
location low-level clouds evident on the 
GOES-13 visible imagery at this time (Fig. 2). 
Further westward, no-clouds are present at 
this layer resulting in the assimilation of zero 
values for each of the cloud microphysical 
variables such as QCLOUD (black dots). 
Assimilated sample size between QCLOUD 
and RH is comparable at 900 hPa (766 vs. 
592) given the large areal coverage of both 
clear and cloudy regions. No data points are 
plotted when either the retrieval algorithm 
fails to generate valid data or DART rejects 
incoming data as outliers.  

Increasing in height to 850 hPa, the 
general patterns remain the same, but with 
fewer saturated relative humidity points being 
assimilated offset by a larger number of null 
microphysical variables (Fig. 3b). The change 
in height of the cloud properties corresponds 
to changes in CBP and CTP values retrieved 
from GOES. Above the CTP, assimilated data 
switch from RH=100% and cloud 
microphysical variables set to missing to 
cloud microphysical values becoming zero 
and RH values now set to missing. Beginning 
at 700 hPa and extending upward to 500 hPa, 
almost no saturated RH data points are being 
assimilated in eastern Oklahoma as the tops of 
most of these clouds lie lower in the 
atmosphere (Fig. 3c, d). In west-central 
Oklahoma, deeper clouds are detected by the 
satellite associated with the developing 
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cumulus field evident in Figure 2 and result in 
the assimilation of a few saturated RH data 
points at several locations (Fig. 3d). The 
changes in the spatial and vertical 
characteristics of cloud microphysical 
properties and environmental humidity 
roughly depicts the location of cloudy vs. 
non-cloudy regions which when assimilated 
into WRF should result in an adjusted and 
hopefully improved model analysis. 
 
b. Diagnostics  
 To the authors’ knowledge, direct 
assimilation of cloud microphysical variables 
derived from satellite observations has not 
been previously undertaken within a WRF-
DART framework. Thus, it is important to 
verify that these variables are being 
successfully assimilated and interpreted 
correctly. At every 15 minute time interval 
between 1800 and 2100 UTC, bias, root mean 
square error (RMSE), and total spread 
(TSPRD) are computed between the 
observations and the analysis. Figure 4 shows 
a time series of these statistics for QCLOUD 
and RH between 1800 and 2100 UTC at 850 
hPa. Bias and RMSE for QCLOUD generally 
decrease out to 2000 UTC to near 0.25 g kg-1 
and 0.55 g kg-1 respectively before increasing 
slightly thereafter (Fig. 4a). Between 1800 
and 2000 UTC, no saw-tooth pattern exists in 
QCLOUD bias or RMSE indicating that little 
change in the prior and posterior analysis 
fields (Fig. 4a). Only after 2000 UTC does the 
desired pattern become evident with drops 
noticeable in both at each time step following 
2000 UTC. The magnitude of the drop also 
increases with time reaching 0.05 g kg-1 by 
the final iteration at 2100 UTC (Fig. 4a). 
Total spread remains roughly constant at 0.05 
g kg-1 with the total number of assimilated 
observations ranging between 700 and 900 at 
each time step (Fig. 4c). Observation 
diagnostics for the other cloud microphysical 
variables are similar (not shown).  

Where clouds are detected from the 
satellite data, the RH at those locations is set 
to 100% generating 200 to 300 assimilated 
observations at each time step (Fig. 4c). Bias 
remains near –8% for all assimilation times 
indicating the model is too dry compared to 
the observations (Fig. 4b). Corresponding 
RMSE is approximately 10%. Differences 
between prior and posterior RH diagnostics 
are small until the final assimilation cycles 
after 2030 UTC. Here, bias and RMSE in the 
posterior analysis decrease approximately 
0.5% with the improvement also increasing as 
a function of time, though this is difficult to 
visualize in Figure 4. This is an indication that 
the assimilation of saturated humidity values 
near the locations of clouds reduces an 
inherent dry bias present in the NOCLD 
analysis to some degree. However, the 
magnitude of these differences is smaller and 
takes longer to become evident than desired. 
Ideally, the saw-tooth patterns would become 
apparent after a couple of assimilation 
iterations. Thus, it would appear the 
assimilation techniques used here are not 
taking full advantage of the satellite data.  
 
c. Impact on WRF 2045 UTC analyses 
 To visualize the effects of assimilating 
these data, we examine the difference in 
ensemble mean QCLOUD between NOCLD 
and CLD runs at 2045 UTC at the same levels 
shown in Figure 3. At 900 hPa, differences in 
QCLOUD on the order of 10-2 g kg-1 are 
evident over much of the eastern half of 
Oklahoma and adjacent areas of Kansas (Fig. 
5a). The largest differences occur in central 
Oklahoma ahead of the developing cumulus 
field located near dryline at –98.0°W (Fig. 2). 
Another area of noticeable differences occurs 
in southeastern Oklahoma near the boundary 
of total cloudy and partly cloudy conditions at 
34.5°N, -96.0°W (Fig. 2). Most differences 
are confined to the regions where saturated 
data points are assimilated with differences 
where null cloud microphysics variables are 
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assimilated being negligible. Neither CLD nor 
NOCLD generate any significant cloud liquid 
water west of the dryline, so assimilating null 
cloud microphysical values here would have 
little effect.  At 850 hPa, the areal coverage of 
differences in QCLOUD is smaller than at 
900 hPa, but shows some interesting features 
compared to the location of assimilated 
observations and visible imagery. The 
greatest differences occur in southwestern 
Missouri and southeastern Oklahoma (Fig. 
5b). A close examination of the differences in 
southeast Oklahoma shows that they seem to 
be oriented in a northwest-to-southeast 
orientation, which is remarkably similar to the 
orientation of the wave features evident in the 
visible imagery at this time (Fig. 2). 
Furthermore, the southwest-to-northeast wave 
pattern observed in the visible imagery in 
northeast Oklahoma also exists in the 
QCLOUD difference field (Fig. 2, 5b). 
Further research is underway to establish 
whether or not this qualitative similarity is 
indeed a result of WRF correctly assimilating 
of these variables.  Other differences are 
present along the dryline with no differences 
observed in central Oklahoma due to the lack 
of data being assimilated in this region (Fig. 
3b). At 700 and 500 hPa, neither NOCLD nor 
CLD generate any QCLOUD at these levels, 
which is consistent with the low top nature of 
the cloud cover in eastern Oklahoma (Fig. 5c, 
d). Most differences are confined to the deep 
cumulus clouds developing along the dryline. 
However, the spatial scale of these differences 
is small making their physical interpretation 
(if one exists) difficult. Differences in the 
total column IWP are also evident in west-
central Oklahoma indicating that assimilating 
these variables affects convective features 
well above the freezing layer.  
 To better visualize the differences in 
QCLOUD wave patterns between NOCLD 
and CLD ensembles, a south-north cross 
section of QCLOUD at 850 hPa at 2045 UTC 
along the 95.5°W meridian between 34° - 

36°N is provided in Figure 6a. Both models 
generate the same overall features with 
several peaks (thick clouds) and valleys (thin 
or no clouds) in QCLOUD.  Some interesting 
differences exist and are represented in a 
rightward shift in the peaks of QCLOUD in 
the CLD analysis between 34° - 35°N (Fig. 
6a). This indicates that the location of the 
clouds in the CLD analysis at 2045 UTC is 
slightly to the north than in NOCLD. The 
overall shift occurs over a distance between 5 
– 10 km representing 2 or 3 model pixels. At 
35.3°N, the peak in QCLOUD generated by 
CLD is shifted slightly to the left indicating a 
slight southward shift in the cloud location. 
North of 35.5°N, CLD and NOCLD are 
generally in close agreement. Differences 
between CLD and NOCLD cloud ice fields 
near the location of the developing convection 
are shown by plotting total column IWP 
generated from CLD and NOCLD ensembles 
at 2045 UTC along the 98.7°W meridian 
between 35° - 37°N (Fig. 6b). Between 35.5° 
- 36.0°N and at 36.3°N, CLD generates less 
cloud ice compared to NOCLD indicating that 
the assimilation of null cloud microphysical 
values derived from the satellite data correctly 
reduces cloud cover in the model analysis 
where none exists in observations.  

The evidence strongly suggests that 
the satellite-derived data are being 
successfully assimilated and are nudging the 
analysis closer towards observations. The 
largest differences occur in the regions of 
either low-level cloud cover below 800 hPa 
and where no clouds are detected over large 
regions. While the magnitudes of these 
differences in QCLOUD and RH are often 
small, they do occur over large areas at low 
levels.  
 
5.  Forecast evaluation  
 The effects of assimilating the GOES 
derived cloud and humidity variables on 
forecast convection are assessed by 
comparing the probability of simulated radar 
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reflectivity from CLD and NOCLD 
ensembles with observed radar reflectivity 
from the KTLX WSR-88D radar at 2 km 
above ground level. Regions where the 
probability of simulated reflectivity above 25 
dBZ exceeds 50% are shaded for one hour 
NCDLD and CLD forecasts at 2200 UTC 
(Fig. 7). WSR-88D reflectivity data indicates 
well-developed convection is ongoing in three 
concentrated areas in Oklahoma near 36.5°, 
35.5°, and 34.2°N (Fig. 7a, b). The location of 
the dryline is also evident in the clear-air 
returns behind the ongoing convection. Both 
NO-CLOUD and CLD models produce 
simulated reflectivity generally corresponding 
to the southern two regions of ongoing 
convection, though the forecast is too far west 
compared to observations. The area covered 
by the 50% contour is somewhat larger in the 
CLD forecast (Fig. 7b). Neither model 
appears skillful over the other, though this 
result is not unexpected given the preliminary 
nature of this research. More important is that 
assimilation of these satellite-derived 
variables yields a measurable difference in the 
convective scale forecast.   
 
6. Summary 
 This research represents an early 
attempt at assimilating cloud microphysical 
properties and atmospheric humidity derived 
from high resolution satellite data using an 
EnKF modeling approach. Preliminary results 
indicate that WRF-DART correctly 
assimilates these variables in a manner that is 
physically consistent with observations. 
However, it currently takes two hours before 
the impacts of assimilating these data produce 
an improvement in the model analysis fields. 
The greatest impacts occur near low-level 
cloud regions, which is most evident in 
eastern Oklahoma at 900 and 850 hPa. 
Assimilation of null cloud microphysical 
properties also appears to produce impacts in 
western Oklahoma corresponding to the 
location of the developing convection. 

Difference patterns in QCLOUD between 
NOCLD and CLD output are remarkably 
similar to the wave-like cloud patterns present 
in the GOES visible imagery. Analysis 
indicates that assimilation of these data yields 
a 5 – 10 km displacement in the QCLOUD 
(and IWP) analyses near the end of the 
assimilation cycle compared to NOCLD. 
Further work is required to verify the specific 
mechanisms leading to this finding. 
Differences in one hour simulated reflectivity 
forecasts also occur, but neither model 
appears to be skillful over the other.  
 Many challenges remain in order to 
prove EnKF assimilation of satellite derived 
humidity and cloud microphysical variables at 
these scales can increase forecast skill in 
models. That it takes two hours before 
significant impacts are noticeable in the 
observation diagnostics is a strong indication 
that the satellite data is not being used to its 
full potential. It is likely that varying cloud 
microphysical schemes within the model will 
have a significant impact how these properties 
are assimilated. Further research is required to 
determine which schemes are best suited to 
this task. Current vertical and horizontal 
localization radii are based off those used for 
similar resolution radar data assimilation, but 
may not be completely valid for satellite-
derived products. Another major concern is 
the uncertainties and errors used for these 
variables during the assimilation process. In 
the case of a large number of null data points, 
normal assumptions about the distribution of 
model errors are likely not valid. Including 
satellite derived vertical profiles of CLWC 
and IWC only complicates this issue further. 
Despite these challenges, these preliminary 
results indicate that direct assimilation of 
these variables from satellite data can be 
useful in convective scale environments. 
Upcoming research is planned to address 
many of these challenges using idealized 
simulations of convection along with 
simulated satellite data to define the most 
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robust methods possible for future real-data 
applications in the WoF project. 
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Tables and Figures: 
 
VARIABLE  TOTAL N ASSIMILATED N % ASSIM 
QCLOUD  205482    187042       91.0  
QICE         205482    190796        92.8 
QRAIN        205482    190380        92.6 
QGRAUP            205482    196392        92.6 
RH              37189      22357  60.1 
TOTAL   859117 780967  90.9 
Table 1. Number of data points generated and successfully assimilated into WRF-DART 
between 1800 – 2100 UTC 10 May 2010. Note the number of null cloud microphysical data 
points far exceeds that for saturated RH data.   
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Figure 1. (a) Tornado, hail, and wind severe weather reports in the Southern Plains between 
2100 UTC 10 May and 0200 UTC 11 May 2010 with surface winds speed and direction and 
mean sea level pressure (hPa) contours at 2100 UTC overlaid. Long barb = 10 ms-1 and short 
barb = 5 ms-1. (b) Surface dewpoint and temperature (°C). (c) 500 hPa geopotential height field 
and wind velocity vectors (ms-1). (d) CAPE (J kg-1) and 0 – 3 km storm relatively helicity 
(SREH, m2s-2) all at 2100 UTC. Hatched areas indicate locations where SREH exceeds 800 m2s-

2.  
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Figure 2. GOES-13 l km resolution visible satellite imagery at 2045 UTC with WSR-88D radar 
reflectivity from KTLX overlaid.  
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Figure 3. Assimilated QCLOUD (dots) and RH (diamonds) variables at 2045 UTC at 900 (a), 
850 (b), 700 (c), and 500 hPa (d). White areas indicate regions where no valid GOES retrievals 
exist or are rejected by DART.  
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Figure 4. Observation diagnostics at 850 hPa for (a) QCLOUD and (b) RH showing model bias 
(blue), RMSE (red), and TSPRD (green) between model analyses and assimilated data before 
and after assimilation for each 15 minute cycle staring at 1800 UTC and continuing until 2100 
UTC. Differences in bias and RMSE remain small until after 2000 UTC for QCLOUD and are 
not evident in RH on this scale. The latter only change by 0.5% at the final iteration. Total and 
assimilated sample size for each time step for QCLOUD and RH is provided in panel c.   
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Figure 5. NOCLD minus CLD analyzed QCLOUD at (a) 900, (b) 850, (c) 700, and (d) 500 hPa 
at 2045 UTC. Red denotes where QCLOUD is greater in the CLD analysis while blue denotes 
where QCLOUD is less. Also plotted on each panel is where the difference in total column IWP 
derived from QICE is either positive or negative. Solid black denotes where IWP from CLD is 
greater and hatched areas where it is less. The locations of the cross sections in the following 
figure are overlaid on panel 5b.  
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Figure 6. South-north cross sections of 850 hPa (a) QCLOUD and (b) IWP from NOCLD 
(black) and CLD (red) ensembles. Relative locations of each cross section are given in Figure 5b.  
 
 

 
Figure 7. WSR-88D radar reflectivity at 2 km AGL from KTLX at 2200 UTC with the 50% 
probability of simulated radar reflectivity > 25 dBZ contour hatched in for (a) NOCLD and (b) 
CLD one hour forecasts.  


