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1. INTRODUCTION 

Land Surface Temperature (LST) is a key variable 
that helps govern radiative, latent and sensible heat 
fluxes at the biosphere-atmosphere interface. Thus, 
understanding and monitoring the dynamics of the LST 
and links with the human induced changes is critical for 
modeling and predicting climate and environmental 
changes, and for many other applications such as 
geology, hydrology and vegetation monitoring (Kerr et 
al., 2004). For instance, simulations with climate models 
show that a reduction in vegetation cover modifies the 
balances of latent and sensible heat fluxes, leading to 
an increase of LST and a decrease of 
evapotranspiration and precipitation over land surfaces 
(Meng et al., 2009; Guillevic et al., 2002; Guillevic and 
Koster, 2002; Collatz et al., 2000; Shukla and Minth, 
1982). Consequently, LST is an important element of 
the climate system that can be derived from satellite 
observations to monitor long-term environmental 
changes. 

The LST Environmental Data Record (EDR) derived 
from the Visible Infrared Imager Radiometer Suite 
(VIIRS), a sensor aboard the NPOESS Preparatory 
Project (NPP) and future Joint Polar Satellite System 
(JPSS) platforms, will provide high spatial resolution 
images of the surface LST. The objective of this paper is 
to present a new validation methodology developed to 
monitor the quality of the VIIRS LST EDR over both 
homogeneous and heterogeneous surfaces (e.g., mixed 
vegetation classes). 
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The approach combines point field data and fine 
resolution imagery in a land surface model to 
characterize the LST over moderate resolution scales 
(multiple km). The model estimates the thermal radiance 
for each subpixel grid cell, then integrates over the all 
grid cells to provide an LST estimate that is comparable 
with a VIIRS measurement over the same area. The 
approach is tested using MODIS LST collection 5 
products as proxy for VIIRS products, and ground data 
from two collocated NOAA’s micrometeorological 
stations from the US Climate Reference Network 
(USCRN) and the Surface Radiation Budget 
(SURFRAD) network located in Bondville, IL, USA. The 
site is a 14-acre area covered with a mix of prairie grass 
and clover surrounded by wheat and soybean crops 
with a different phenology. 

2. VALIDATION METHODOLOGY DESCRIPTION 

The LST validation scheme outlined here is 
anchored to ground-based observations. For most 
mixed vegetated landscapes, composed of various land 
cover types or soils, the LST measured by a station at 
one specific location – i.e., a point measurement – does 
not represent the surrounding area that is part of the 
coarser satellite sensor pixel. In the present work, the 
SETHYS land surface model model is used to estimate 
these components for a subpixel cell using measured 
surface and meteorological parameters. A cell is defined 
here as a 250m resolution area of homogeneous, or 
evenly mixed heterogeneous, vegetation cover. The 
model is executed for each cell, then used to estimate 
the aggregate LST over all subpixel cells. Here, a 
MODIS LST pixel is composed of 16 subpixel cells. 
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3. THE SETHYS LAND SURFACE MODEL 

The SETHYS – for “Suivi de l’ETat HYdrique des 
Sols,” French acronym for soil moisture monitoring – 
land surface model (Coudert et al., 2006) is a one 
dimensional soil-vegetation-atmosphere transfer model 
that especially represents the LST diurnal cycle and the 
associated response of remote sensing sensors, 
accounting for specific spectral domains and viewing 
configurations. The model needs atmospheric forcing 
and surface biophysical parameters as inputs, and 
simulates the energy and water exchanges between the 
surface and the atmosphere. The parameterizations of 
energy and water transfers used in the model are 
conceptual and involve a set of parameters that are 
usually not routinely measured at ground level. Thus, 
model calibration consists in the minimization of a cost 
function expressing the divergence between model 
outputs and observations. We used the multi-objective 
calibration iterative process (MCIP) (Demarty et al., 
2005), that is based on a stochastic Monte Carlo 
approach, and consists of the reduction of initial 
parameter ranges by the optimization of one or several 
model outputs against observations, e.g., LST bias and 
root mean square error (RMSE) here. 

4. FIELD DATA NETWORKS 

Our validation approach is designed to be 
applicable over two NOAA field measurements 
networks: 

- The U.S. Climate Reference Network (USCRN) (Leduc 
et al., 2009) provides weather and climate 
measurements over 120 stations developed, deployed, 
managed, and maintained by the National Oceanic and 
Atmospheric Administration (NOAA) in the continental 
United States for the express purpose of detecting the 
signal of climate change. The USCRN data are 
representative of local environmental conditions (Fig. 1). 

 

Figure 1: Schematic description of a US Climate reference 
Network station. Each station has the same design. 

- The Surface Radiation Budget Network (SURFRAD) 
(Augustine et al., 2005) was established in 1993 with its 
primary objective to support climate research with 
accurate, continuous, long-term measurements of the 
surface radiation budget over the United States. 
Independent measures of upwelling and downwelling, 
solar and infrared are the primary measurements; 
ancillary observations include direct and diffuse solar, 
photosynthetically active radiation, UVB, spectral solar, 
and meteorological parameters. 

5. SATELLITE PRODUCTS 
 

 
 

 
Figure 2: Relationship between NDVI and LAI MODIS 
standard-products at 1 km resolution (left). The relationship 
obtained at 1km is applied to high-resolution NDVI data to 
derive LAI values at 250m resolution (right). The averaged LAI 
value of the 16 sub-pixels included in a moderate resolution 
pixel and the MODIS LAI standard-product at 1 km are 
represented. 
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We use land surface products derived from the 
Moderate Resolution Imaging Spectroradiometers 
(MODIS) (Barnes	
  et	
  al.,	
  1998)	
  onboard Terra and Aqua 
satellites to develop and evaluate the VIIRS validation 
methodology. 

The MODIS LST Collection 5 product suite 
developed by Wan et al. (2002) is based on the local 
split-window technique (Becker and Li, 1990;	
  Wan	
  and	
  
Dozier,	
  1996), and is provided at ≈927m resolution. The 
scaling methodology requires higher resolution 
information about vegetation density. We use a 
relationship between the NDVI and the LAI of vegetation 
covers (Asrar et al., 1984; Courault et al., 2010) to 
estimate the LAI at 250m resolution (Fig. 2). The 
relation is calibrated using MODIS NDVI and LAI at 
1km, and used to estimate LAI at 250m resolution using 
250m MODIS NDVI product as input. 

6. RESULTS AND DISCUSSION 

The experiment is based on one year of data 
collected in 2010 (table 1). We had selected six periods 
of time with significant clear days and good quality 
satellite data. 

Table 1: Periods of time selected to evaluate the validation 
scheme. Quality flags associated with MODIS data are used to 
define six periods with no obvious and persistent clouds over 
the area. Number of quality-controlled MODIS data available 
for each period is indicated. 

 

The model has been calibrated for the six selected 
validation periods (table 1), by adjusting twenty-three 
model parameters using the iterative MCIP algorithm. 
Ten algorithm iterations are processed to reduce the 
parameter ranges and minimize two predefined cost 
functions: the bias and root mean square error (RMSE) 
calculated between simulated and ground-based LST. 
The bias, RMSE and correlation coefficient calculated 
between observed and simulated LST are in averaged 
around 0K, lower than 1.5K and higher than 0.99, 
respectively. For most of validation periods, the ground 

truth is well included in the look-up table of simulations 
(Fig. 3). 

 

 
Figure 3: Look-up table of model simulations (LST values) 
generated by the calibration methodology. Every iteration of the 
MCIP algorithm represents an ensemble of 6,000 simulations. 
Ten iterations are used to minimize the bias and RMSE 
between observed (black line) and simulated LST. Results are 
for period 5. 

A collection of 110 MODIS clear-sky images 
collected over 2010 (table 1) are used to evaluate the 
scaling methodology by comparing satellite-derived data 
with ground-based LST acounting for scaling process or 
not (Fig. 4). Whichever validation period, MODIS LST 
products agree better with scaled-up field data than with 
non-scaled field observations. Globally, over all periods, 
the scaled-up field data are more comparable with 
satellite products: the standard deviation of the 
difference between satellite LST and ground-based data 
– that represents the precision of the satellite product – 
is about 2.2K with scaling and higher than 3K without 
scaling. 

 

 
Figure 4: LST measured by a SURFRAD station (gray line) 
and by MODIS satellites (circles and stars), and assessed 
using the upscaling methodology (black line) over Bondville, IL. 
Error bars represent the possible errors associated with MODIS 
data – from MODIS quality flags. 
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Ground station
Upscaling method
MODIS Terra
MODIS Aqua

Period First 
day 

Last 
day 

Number of “clear sky” MODIS data 
Daytime Nighttime Total 

1 98 108 8 12 20 
2 165 179 6 3 9 
3 218 228 8 4 12 
4 239 249 10 7 17 
5 272 282 15 17 32 
6 285 295 8 14 22 
  TOTAL 55 58 113 
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7. CONCLUSION 

Users of satellite products put a high priority on 
providing statements of products accuracy – and a 
product will be used only if it is reliable and therefore 
fully validated. In this context, we have developed a new 
validation methodology to monitor the quality of satellite 
LST products at moderate spatial resolution and 
evaluate retrieval algorithms performance. Using 
ground-based data without scaling, we found that 
MODIS LST product – used here as VIIRS proxy – does 
not verify NPP/VIIRS specifications. However, the 
product precision calculated using scaled-up ground 
data is around 2.0K and lower than VIIRS requirements 
(=2.5K). The ro utine VIIRS LST validation will be mainly 
based on ground data from the USCRN network that 
represents around 120 stations over the continental US. 
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