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Abstract: There are continued attempts towards unifying the general circulation and cloud-resolving models. 
For designing high-resolution general circulation models, it is necessary to formulate a set of equations for 
the nonhydrostatic system such that when the nonhydrostatic pressure is neglected, the system of equations 
reduces to a quasi-hydrostatic compressible model. Following the Arakawa and Konor (2009) approach, the 
governing equations of a unified model on icosahedral-hexagonal grid are formulated in the hybrid vertical 
coordinate. Further to this formulation, the flow dependent variables are represented in the basic equations 
into two parts - grid-resolved and a subgrid part to formulate a system of equations that is capable of 
simulating the variability of unresolved processes. The advantage of splitting is obvious because the system 
of equations for grid-resolved variables are indeed those of a quasi-hydrostatic compressible model of the 
atmosphere. The discrete formulations of divergence, vorticity and gradient are then used to solve the 
shallow water model on the icosahedral-hexagonal grid as an example of the first stage development of a 
comprehensive unified model.  

1.  Introduction   
The high-resolution operational models of weather forecasting are required to run at a grid size of the order 
of a kilometer, which can be accomplished as the computing power of newer platforms (GPUs or APUs) is 
available and affordable. However, the governing equations with traditional approximation do not represent 
the stochastic part in weather and climate that becomes important in atmospheric flows resolved on the scale 
of a kilometer and the traditional approximation breaks down. Arakawa and Konor (2009) have presented a 
system of equations that unites the nonhydrostatic anelastic system and quasi-hydrostatic system to derive the 
governing equations that form the foundation of cloud-resolving models. This study forms the starting point 
of unifying the Reynolds stress equations with anelastic, quasi-hydrostatic system of equations. The key 
assumption here is that even in the unified system, subgrid scale motions of the atmosphere may not have 
been fully represented by the parameterizations of dynamical and thermodynamical processes. Moreover, 
Palmer (1989) showed that adding the stochastic perturbations to the governing equations improves the 
forecasting skill of the numerical weather prediction (NWP) model.  The NWP model is also sensitive to 
initial conditions due to the chaotic behaviour of the atmosphere, but this problem has been dealt effectively 
with the ensemble approach to numerical weather prediction that is followed at the major forecast centres. 
The multimodel superensemble technique, developed by Krishnamurti and coworkers (Krishnamurti et al. 
1999, 2000a, 2000b, Yun et al. 2005) in several research papers, has been demonstrated as a powerful post-
processing tool for weather forecast parameters from different global models with reduced direct model 
output errors in comparison to individual model forecasts. The superensemble methodology employs a large 
number of forecasts from different models and the past datasets that collectively represent the training phase 
to compute weights using least square minimization of the differences between forecast and observed 
meteorological parameters. The technique successfully extends the limit of predictability even for the 
precipitation forecast. This is another way to incorporate the stochastic nature of the meteorological flows in 
to weather and climate forecasting.  
The physics of the model also neglects the stochastic nature of various atmospheric processes by 
parameterizing the physical phenomena in terms of the resolved variables. In the context of parameterization 
of convection, the computational grid volume is assumed either entirely saturated or entirely unsaturated, 
which would be a severe limitation until subgrid scale condensation is included in the governing system 



(Sommeria 1976, Sommeria and Deardorff 1977). There are several processes that require better 
representation in a numerical model, which may in turn improve the predictability of the atmospheric flows.  
Thus, it would have a direct bearing on accuracy and range of the useful forecast from a numerical model.  

Here we derive the set of equations that becomes an integral part of the anelastic, quasi-hydrostatic system 
because the stochastic perturbations in the governing equations may be defined by solutions of these 
equations. An attempt has been made in this paper to include the effect of second order correlation terms in 
the governing equations. A systematic formulation has been presented which takes the advantage of the 
advances already made in this direction especially in turbulence modelling, large eddy simulations (LES) 
more than three decades ago, and the recent attempts in formulating the cloud resolving models of the 
atmosphere. 

2.  Governing Equations 
We have followed the philosophy of Arakawa and Konor (2009): “One of the main points of the Unified 
System is that it reduces to a quasi-hydrostatic model when the nonhydrostatic pressure is neglected. In this 
way the system maintains a close tie with the existing primitive equation models.” Thus, the system of 
equations formulated here using the Reynolds averaging, form an integral part of the governing equations, 
which reduces to an anelastic, quasi-hydrostatic system if the subgrid scale terms representing stochastic 
perturbations are neglected in the equations. For deriving the relevant set of equations, the momentum, 
thermodynamic and moisture continuity equations are taken in the following form in the pressure coordinate 
system. For the sake of brevity, we write the Coriolis parameter and its derivative as they appear in the 
equations, 

f=2 sin      f =2 cos  ϕ ϕ′Ω Ω         (2.1) 
 
The choice of vertical coordinate is very important as the continuity equation is used in writing the 
momentum equations in the flux form.  This facilitates the separation of the system of equation for resolved 
part and the derivation of disturbance equation which are used to derive the equations for the Reynolds 
stresses Arakawa and Konor (2009) have derived the system of equations of unified system in quasi-
hydrostatics pressure coordinate (p) which was introduced by René Laprise (1992) as an independent 
variable. All exiting primitive equation models use pressure or its variants as a vertical coordinate, and use of 
pressure as a vertical coordinate in unified system implies that unified system has the same vertical structure 
as the conventional large scale models. Arakawa and Konor (2009) also showed that the quasi-hydrostatics 
pressure coordinate could be used in nonhydrostatic atmospheric models based on fully compressible 
equations.  More interestingly, the unified system explicitly deals with quasi-hydrostatic values of 
thermodynamic state variables (greater merit of Laprise approach). There is, however, a clear advantage of 
using these equations as their solutions could be taken as a reference state for deriving more comprehensive 
and complete set of equations for this study.  
 
In order to derive the disturbance equations, a reference state is required. The solution of the anelastic and 
quasi-hydrostatic system is assumed in this formulation as the “grid-resolved part” relative to which the 
perturbation fields are derived. It is advantageous to deal with perturbations of the dynamical and 
thermodynamical equations that are defined with respect to the reference state, which is the solution of a 
numerical weather prediction system with filtering of sound waves from the system. Like wise, one may also 
take the solution of hydrostatic primitive equations as a reference state, but it is preferable to take the 
solutions of anelastic, quasi-hydrostatic system as the reference state, and all the perturbed quantities have 
been defined with reference to this state as 



  u = !u+ !u ,   v = !v+ !v ,  w = !w+ !w ,  "  = !"+ !" ,   

   ! = !! + "! ,   q = !q + "q ,   T = !T + "T .  (2.2) 

The dependent variables are separated into “ a grid-resolved part” represented by “tilde” and an unresolved 
“subgrid part” denoted by “prime” of a dependent variable. The variables with tildes are the solutions of the 
anelastic, quasi-hydrostatic system over which the perturbations (primed variables) are superimposed. To 
derive the Reynolds averaged equations with subgrid scale forcing, it is necessary to first write the 
disturbance equations for the perturbation variables.  

Since the algebra involved is tedious, the differential operators are represented as, 
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X  and  Y are working coordinates so that the governing equations may be written in a better form. We shall 
now develop an appropriate set of equations for the “subgrid part”, which becomes considerably simpler, if 
the equations are written in the following form in the quasi-hydrostatic pressure coordinate system.  
 

Governing Equations in Quasi-hydrostatic Pressure (p) Coordinate 
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The above set of governing equations include the subgrid scale terms (Fxl) which can be explicitly 

parameterized in terms of the “resolved” large scale variables and the subgrid scale terms ( ) which are 

obtained by solving a set of prognostic equations that are arrived at by using the second-order closure 
assumption. This is perhaps the best way to include the conventional parameterizations that have made NWP 
a successful endeavour, and the advances in atmospheric sciences made by large-eddy simulations. We 
define the total derivative as, 
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so that the second-moment equations can be written in a more convenient form as follows.
 Equation for  !u 2  
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Equation For 2'v  
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Equation for 2w′  
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Equation for    !u !v   
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Added to the above set of equations are 16 more equations for other second order correlations terms of 
similar type, which have been omitted here.  In each of the equation, the triple correction terms are to be 

 Fxs
r



parameterized, which is the closure problem. We believe that the Reynolds Averaged Navier-Stokes (RANS) 
approach appears a practical option, which would allow sufficiently fine resolution of the order of a 
kilometer with the basic ”resolved” state that is also evolving in time as model integrations advance. An 
important simplification has been introduced in deriving the second-moment equations:  correlations of 
pressure with dynamical, thermodynamical and humidity variables have been neglected in the second-
moment equations. Most importantly, the pressure strain waves (Hanjalić and Launder, 2011, p28; Daly and 
Harlow 1970) or the disturbances propagating with the speed of sound have been removed from the system 
through this artifact. It is to be noted that resolved component of the atmospheric flows (represented by 
quantities with ~) would be obtained by solving the system of equations formulated following the theory of 
Arakawa and Konor (2009). 

3.  Filtering of Sound Waves  

As pointed out by Daly and Harlow (1970) and, Hanjalić and Launder (2011) the correlations of velocity 
fluctuations with pressure fluctuations will propagate with the speed of sound, which will immediately mask 
the meteorologically important waves. Thus in our design the acoustic waves have been removed at each 
stage: 

(i) Sound waves have been eliminated from the system representing the resolved part of motion 
following the theory of Arakawa and Konor (2009); 

(ii) Sound waves have been eliminated from “subgrid part” of the motion by neglecting the 
correlations of pressure and velocity fluctuations.  

4.  Second-Moment Closures:  

The set of equations given is Sec. 2 involves triple correlation terms such as  !
ui !uj !uk ,  !

" !uj !uk ,  !
q !uj !uk etc. are 

to parameterized. These terms are modelled following the “generalized gradient diffusion hypothesis 
(GGDH)” of Daly and Harlow (1970) in the manner as proposed by Hanjalić and Launder (1972, 2011). 

Thus a model for  consists of three terms: 
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Here  !  is the turbulence dissipation parameter. We can easily formulate the equation for calculating the 

turbulence kinetic energy   k̂ , but it remains to provide a means of determining the dissipation rate of 
turbulence energy, ! . For atmospheric flow, it appears that the turbulence energy dissipation rate ! may be 
related the mean square of the fluctuations part of the enstrophy; that is                        ! =  D" ; 
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xΔ is the grid size and tΔ is the time step in the model. Note that parameter  cl  has to be chosen. An 

appropriate value should be such that,  0 < cl <1.  
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Expression for Triple Correlation Terms 

Following (4.1) we write the expression for Triple correlations: 
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There are other 35 expressions for the other triple correlation terms. 

5.  Governing equations of the reference state 

The reference state is the solution of anelastic, quasi-hydrostatic equation system of equations with the quasi-
hydrostatic pressure (p) as the vertical coordinate. This system is obtained by setting the terms Fxl and  to 
zero in equations (2.4)-(2.8) and the continuity equation (2.9). The nonlinear terms have been split in to a 
gradient term and the vorticity (Sadourny and Laval 1984, Hourdin et al. 2006). The derivation follows the 
procedure suggested by Arakawa and Konor (2009) and we obtain the following set of equations for 
calculating the reference state.  The momentum, continuity, thermodynamic and other equations are as 

follows. Note that  p ! p
qs  in the following equations.  
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Here  ; and taking  makes the procedure simpler.     

 
Finally the equation for nonhydrostatic pressure! p is as follows, 
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6.  Computational Procedure and Discretization on icosahedral-hexagonal grid  

After adding the second-moment terms to the anelastic, quasi-hydrostatic equations with Boussinesq 
approximation, the governing set may be regarded more comprehensive and complete, which is devoid of 
sound waves.  The icosahedral hexagonal grids, first introduced by Sadourny et al. (1968) are shown in Fig. 
1, which shows the discretization on the sphere at Level-6 and Level-10; that is, discretization remains 
uniform as one moves to finer and finer resolutions. Hence, this grid system is very suitable to design high-
resolution models, and there is a surge of paper with this grid system in the last decade (Heikes and Randall 
(1995), Giraldo 1997, Thuburn 1997 Majeskwi et al. 2002, Tomita and Satoh 2004, Giraldo 2006, Mittal et 
al. 2007, many more studies in recent years). 
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       Figure 1: Icosahedral-hexagonal grids: Level-6  and Level-10

 
   Figure 2: Vornoi-Delaunay associations

	
  

 

The computational geometry of the grid system has been described by Mittal (2008) which includes grid 

generation, node numbering and node search algorithms, and grid refinement through Vornoi-Delaunay 

associations, data structure and storage. The discrete operators on this grid system are as follows:  
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Curl:       k !" #Q
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In the above expressions for grad, div, and curl, ! is a scalar and (p,q) are the components of the vector  Q
!"

. 
Laplacian of a scalar !  will be obtained using the sequence div grad ! , so first the grad !  will be 
computed and then its divergence will be computed on the icosahedral-hexagonal grid. T represents a 
triangular element of the hexagonal/pentagonal element Hk.  
 
We now present the flow of computations for entire model dynamics. First and foremost requirement is to 
prepare the initial data. This would be done by directly analyzing the meteorological observations on the 
icosahedral-hexagonal grid using suitable radial functions at a resolution of 50 km. Another requirement is 
the climatology for each day in a year, which is being prepared from the 12-year ECMWF data at native grid 
at 75 km and 25 km. Since our reference model is LMDZ, so the governing equations will be transformed in 
the hybrid coordinate system. 
 
Computation of reference state:  Equations (5.1)-(5.14) will be solved in the hybrid coordinate system 
using the icosahedral-hexagonal grids. To achieve this, we compute the nonhydrostatic part of the pressure (
! p ) from equation (5.14) with prescribed boundary conditions, as it is an equation of elliptic type. On 
realizing this step, the equations (5.1)-(5.13) are solved to obtain the horizontal wind field and the vertical 
velocities surface pressure temperature and other necessary variables. 
 
Solutions of Reynolds stress equations: The system consists of 20 and more equations, for which the 
resolved fields input to equations (5.1)-(5.14) and the averaged values of quantities such as !u 2,  !v 2,  !u !v  



etc., which need to be computed. If the variables are not staggered then one may take the average of a 
dynamic or thermodynamic variable carried at the points P1, P2, P3, P4, P5 and P6 ; and the average value will 
be defined at the centre (0,0) as shown in Figure 2. Using this average value, we then can find the deviation 
by subtracting this average value from the value of the variable in question at point (0,0).  In doing so we also 
assume that the dynamical variable is a random variable such that the time and spatial averages converge to 
an ensemble average (ergodicity). Thus initial values of all the second-moment terms can be defined to solve 
the second-moment equations (2.16) etc.  
 
Complete solution:  The solution of second-moment equations is then used to compute derivative of the 
variables in Fxs

r  as they appear in equations (2.9)-(2.14), and are then substituted in equations (2.1)-(2.8).  At 
this stage, the forcing has been modified by the subgrid scale processes in these equations, which will be 
solved on the icosahedral-hexagonal grids for the complete solution of the modified anelastic, quasi-
hydrostatic system with Reynolds stresses. 
 
Test Problem: Rossby-Haurwitz wave 

 The discrete operators (6.1)-(6.3) were verified with several test cases for the shallow-water equations on a 
sphere (Mittal 2008) using the icosahedral-hexagonal grids. Tests for the Rossby-Haurwitz wave is discussed 
here. The shallow-water equations were integrated up to day-14 at two different resolutions: one at Level-48 
(23,042 gridpoints) and at Level-64 (40,962 gridpoints). Using these forms of the discrete operators for grad, 
div and curl in the shallow-water equations produced results that match well with other studies (Thuburn, 
1997) for this test case.  Most importantly, the global invariants (energy and enstrophy) were very 
maintained. Here we only show in Fig. 3 the results of day-14 for this test case for the height field. The ratios 
of total energy and enstrophy with their respective day-0 values were RTE = 1.0004908; RTZ = 1.0013307. 
The ratio of the total mass on day-14 to day-0 and the day-0 total mass was 0.99997794. 
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Figure 3: Height field at Day-14 from Shallow-water model integration on ico-hexa grids

 

 
 
Conclusion 
Second-moment equations have been added to the anelastic, quasi-hydrostatic system derived by Arakawa 
and Konor (2009). The sound waves have been filtered from the second-moment equations by neglecting the 
pressure-velocity correlations as the nonhydrostatic pressure , is a resolved variable in the reference state. ! p



The discrete representations of grad, div and curl have been tested with the shallow-water equations on 
icosahedral-hexagonal grids. The dynamical core for the global icosahedral-hexagonal model will be 
implemented on a GPU Cluster. The work in this direction is progressing in a group involving 14 members 
from different science and engineering departs at IIT Delhi. 
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