
463     VERIFICATION OF ENSEMBLES AT THE MIDDLE ATLANTIC RIVER FORECAST CENTER  
 
 

Andrew W. Philpott*, Patricia Wnek, and James D. Brown 
NOAA/NWS, Middle Atlantic River Forecast Center, State College, PA 

NOAA/NWS, Silver Spring, MD and University Corporation for Atmospheric Research 
 
 

1. INTRODUCTION 
 

 Four National Weather Service (NWS) River Forecast 
Centers (RFCs) are producing short-term (0-7 day) streamflow 
forecasts using meteorological model ensembles. Middle 
Atlantic, Northeast, Southeast, and Ohio RFCs will continue to 
generate products in an experimental period lasting through 
September 15, 2012, during which time public comments will 
be solicited.  

The ensemble forecast products are available at 
http://www.erh.noaa.gov/mmefs/.  

Three different ensemble forecasts are available, 
based on three different National Centers for Environmental 
Prediction (NCEP) meteorological ensembles, namely the 21-
member Global Ensemble Forecast System (GEFS) through 
lead time 168 hours, the 21-member Short Range Ensemble 
Forecast (SREF) system through lead time 90 hours, and the 
42-member North American Ensemble Forecast System 
(NAEFS) through lead time 168 hours. Precipitation and 
temperature ensembles from these systems are interpolated 
into basin averaged values and run through the RFC’s 
hydrologic model to produce ensemble forecasts of snow 
water equivalent and river stage. Plots of the input ensembles 
and output ensembles are provided at all forecast points on 
the Ensemble River Forecast webpage. 

The focus of this paper is on verification of the 
streamflow forecasts, however work is also ongoing in 
verifying basin averaged ensemble precipitation and 
temperature inputs. The Middle Atlantic RFC created four-
times-daily SREF based ensembles from December 2008 
through November 2011, which included about 4200 
forecasts. NAEFS and GEFS based ensemble river forecasts 
are only twice-daily, and were only available for one year, from 
November 2010 through November 2011. Since ensemble 
forecast verification relies on a large sample size, it was most 
productive to focus this paper on the SREF ensembles. 
However, limited comparisons were made between the SREF, 
NAEFS, and GEFS ensembles over the one year period in 
which all three were available. 
 
 
 
 
 
 
 

2. METHODS 
 

 All verification work was completed using the 
Ensemble Verification System (EVS) developed by the NWS 
Office of Hydrologic Development in Silver Spring, MD (Brown 
et al. 2010).  

The first step in verification pairs forecasts with 
observations. A variety of river forecast points were selected, 
including larger rivers and smaller headwater locations. 
Temperature and precipitation verification required basin-
averaged precipitation and temperature data from the Middle 
Atlantic RFC archive to be paired with the basin-averaged 
ensemble input forecasts. Six-hourly river stage observations 
from the USGS and NWS were converted into streamflow (in 
meters cubed per second) using archived USGS rating curves, 
to be paired with the streamflow ensemble forecasts.  

The coefficient of variation of the root mean square 
error, relative mean error, and correlation coefficient of the 
ensemble mean forecast were computed with the EVS. 
Coefficient of variation of the root mean square error and 
relative mean error are both normalized metrics such that they 
can be compared between locations having greatly different 
magnitudes of streamflow.  

Box plots of the ensemble forecast error against 
observed values were made to investigate spread and bias. In 
addition, spread-bias diagrams displayed how spread and bias 
impacted forecast reliability, by plotting the frequency at which 
observations fell within each portion of the ensemble 
distributions. Biases or underspreading would cause the 
observations to fall more often within a certain “window” of the 
ensemble distribution than implied by the size of that window, 
for example being above the 75

th
 percentile more than 25% of 

the time.  
Forecast reliability and discrimination are two of the 

key components to determine ensemble forecast quality (Wilks 
2006). Forecast reliability indicates how well the forecast 
probabilities match up with the observed relative frequencies 
on those occasions when something is forecast with a given 
probability. The reliability diagrams compared the forecast 
probabilities of a particular event to the observed relative 
frequencies, where the event in this study was defined as the 
exceedence of the streamflow threshold corresponding to the 
95

th
 percentile of the climatological distribution (Hsu and 

Murphy, 1986). Forecast discrimination indicates how well-
differentiated the forecasts might be given different observed 
conditions. For example, the Relative Operating Characteristic 
(ROC) compares the probability of detection, which is the 
fraction of observed events that were correctly forecast to 
occur, against the probability of false detection, which is the 
fraction of observed non-events that were incorrectly forecast 
to occur. 
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3. RESULTS 
 
a) Comparison between GEFS, NAEFS, and SREF  
 

 Over the one year in which GEFS, NAEFS, and 
SREF ensembles were all available, they were similar, except 
that the SREF ensembles had a larger negative bias early in 
the forecast period (Fig. 1).  This problem with the SREF 
forecasts may be related to how the ensemble river forecasts 
handle SREF runs that start three-hours off the standard river 
forecasting center synoptic times of 0Z, 6Z, 12Z, and 18Z 
(which appears to introduce an underforecasting error in the 
precipitation forecasts on the first timestep). The exact cause 
and a solution to this bias in the ensemble river forecasts must 
be determined.  By day 3, the three different ensemble types 
had very similar relative mean error.   

 
Figure 1: Relative mean error in the streamflow ensemble mean 
forecasts for November 2010 through November 2011 at the Millstone 
River at Blackwells Mills, NJ.  

 Further comparison of the ensemble river forecasts 
reveal that the GEFS-based forecasts had less spread in the 
forecasts than the NAEFS- and SREF-based forecasts. This is 
expected, since the SREF and NAEFS ensembles are based 
on multiple meteorological models. The NAEFS- and SREF-
based streamflow forecasts, but particularly the GEFS-based 
forecasts, are underspread which affects the reliability of the 
ensemble streamflow forecasts.  

b) Ensemble Mean Statistics in SREF over 3 years  

  SREF ensemble mean forecasts from December 
2008 through November 2011 were compared between 
different locations (Figs. 2-4).  The relative mean error in the 
ensemble mean forecasts at five different river forecast points 
are presented (Fig. 2). Some of the differences between points 
were due to differences in the bias of the input precipitation 
forecasts. However, there were also differences in the 
hydrologic modeling biases of different locations that have an 
effect. For example, Cortland, NY (CRTN6TGH) was the most 
positively biased of the five streamflow forecasts (Fig. 2), but 

this was not explained by a difference in bias in the 
precipitation (not shown). However, Farmville, VA 
(FARV2AMX) was the most negatively biased of the locations 
both in precipitation (not shown) and streamflow. 

 
Figure 2: Relative mean error in the SREF-based streamflow 
ensemble mean for November 2008 through November 2011 at five 
river forecast points. Locations key:  
CRTN6TGH: Tioughnioga River at Cortland, NY 
WBRP1SUQ: Susquehanna River at Wilkes-Barre, PA 
MHPP1SUQ: Susquehanna River at Meshoppen, PA 
FARV2AMX: Appomattox River at Farmville, VA 
RMDV2JMS: James River at Richmond, VA 

 

Figure 3: Correlation between SREF-based streamflow ensemble 
mean forecasts and observations.  

The linear correlation between observations and the 
ensemble mean forecasts was high (Fig. 3), although it 
decreased steadily with forecast lead time. Curiously, 
FARV2AMX (Farmville, VA) had a lower linear correlation 
between forecasts and observations than the other four points. 
One possible explanation is greater hydrologic modeling errors 
at this location, perhaps related to hydrologic model 



parameters. However, particular problems with the 
precipitation forecasts at this location, and with the basin-
averaging process (the Appomattox River basin has a relative 
scarcity of rain gages compared to other Middle Atlantic RFC 
basins), also may have contributed.   

Finally, the Root Mean Square Error (RMSE) shows 
the average error-spread of the ensemble mean forecast (Fig. 
4). The subsequent graphs of RMSE have been divided by the 
mean observed flow at each point over the 3 years to allow for 
comparing between locations (i.e. the coefficient of variation of 
the RMSE).  The river forecasts at Farmville, VA had a higher 
coefficient of variation of RMSE than the other location, 
similarly to how they had a lower correlation coefficient. At all 
points, there was a steady degradation in forecast quality with 
increasing forecast lead time, due to a reduction in the quality 
of the SREF forcing forecasts for longer lead times as well as 
cumulative hydrologic model and basin averaging errors.  

 

Figure 4 Coefficient of variation of the RMSE of the SREF-based 
ensemble mean forecasts at 4 river forecast points.  

 

c) Biases and Spread  

 Box plots of ensemble forecast error versus observed 
values are capable of showing biases, both unconditional and 
conditioned on the observed value. They also give an 
impression of any problems with overspreading or 
underspreading of the forecasts. In these plots, each box is a 
single ensemble forecast of 21 members that was paired with 
a particular observation (Figs 5-7). The lowest member will 
have the most negative or least positive error compared to the 
observation and the highest member will have the most 
positive or least negative error. The perfect forecasting system 
would have all boxes intersecting the zero error line. Also, in 
looking at all the boxes overall, the zero error line would fall 
within each portion of the various boxes an equal percentage 
of the time. For example, the median forecast, as indicated by 
the black dot on the plots, would be an underforecast as often 
as an overforecast. Furthermore, to have no conditional bias, 

the chance that the zero error line would fall within any portion 
of the box would not depend on the observed value at all, so 
for example there would be just as much a chance for the 
median forecast to be above the zero error line for high 
observations as for low observations.  
 In this case, the forecasts had a conditional bias on 
the observations, where highest observed events tended to be 
underforecast by the ensemble median, and even by higher 
ensemble members. Lower observed events tended to be 
overforecast by the ensemble median and often by the lower 
ensemble members as well. Part of the problem can be traced 
to a strong conditional bias in the precipitation forecasts (Fig. 
6). Basin-average precipitation forecasts interpolated from the 
SREF grid were unable to capture the small scale features 
that lead to high observed basin-averaged precipitation 
amounts. However, at this location (Cortland, NY), the 
hydrologic modeling system introduced positive bias, as seen 
in the ensemble mean forecast for this location, with the result 
that underforecasting bias was only present for the very 
highest observed streamflow cases, while an overforecasting 
bias was present both for moderate and low flows.  

 
Figure 5: Box plots of the SREF-based input streamflow ensemble 
forecasts for November 2008 through November 2011 at the 
Tioughnioga River at Cortland, NY, at a lead time of 54 hours. Each 
box is a single ensemble forecast of 21 members, which pairs with a 
particular observation. The green boxes indicate the 25th through 75th 
percentile of the ensemble distributions and the black dots are the 
median forecasts. The red whiskers indicate the minimum and 
maximum forecasts. 

  
The streamflow forecasts also showed evidence of 

underspreading, with the spread of the forecasts not being 
large enough to capture the observations in too many cases. 
This means that the ensemble forecasts were overconfident, 
in that they sometimes forecast a 100 percent chance that the 
observation would fall within a range that ended up being not 
wide enough. The underspreading was worse for the early 
lead time forecasts (not shown), although the magnitude of 
errors in early lead time forecasts was less. The cause of 
underspreading was that the river ensemble forecasts did not 
account for the hydrologic uncertainties, including those in the 



initial conditions of the hydrologic model, only the forcing 
uncertainties. By later lead times, spread in the precipitation 
forecasts had increased the spread in the streamflow 
forecasts, decreasing the overconfidence. 
 
 

 

Figure 6: Box plots of the SREF-based input precipitation ensemble 
forecasts from November 2008 through November 2011 for the 
Tioughnioga River at Cortland basin, at a lead time of 54 hours. The 
green boxes indicate the 25th through 75th percentile of the ensemble 
distributions and the black dots are the median forecasts. The red 
whiskers indicate the minimum and maximum forecasts. 

 Overall one of the main conclusions of verification 
work with the ensemble river forecasts so far, is that a spread 
based entirely on uncertainty in the precipitation and 
temperature forecasts cannot completely cover the total 
uncertainty of river forecasting. Uncertainties in hydrologic 
factors such as routing, runoff efficiency, effects of rainfall 
intensity on runoff, snowmelt parameters, and baseflow 
recession are considerable, and, therefore, the ensemble river 
forecasting system will be underspread and will have biases 
specific to each forecast point. Due to hydrologic modeling 
uncertainties, these ensemble river forecasts cannot capture 
the full range of possible flows in a particular situation.  
 Some qualitative comparison of the verification of 
different locations can be made by comparing the box plots. In 
this example, there were some differences evident between 
Cortland, NY (Fig. 5) and a further downstream point at 
Meshoppen, PA (Fig. 7). The most obvious result was a 
greater underforecasting bias of the highest observed events 
at Meshoppen. There also appeared to be somewhat greater 
underspreading in the Meshoppen forecasts (Fig. 7).    

 
Figure 7: Box plots of the SREF-based input precipitation ensemble 
forecasts for November 2008 through November 2011 at Meshoppen, 
PA, at a lead time of 54 hours.  

 
As further evidence of the problems with forecast 

spread, we conclude this section with a presentation of the 
spread-bias diagrams, which show how spread and bias in the 
forecasts affects reliability (Fig. 8). The spread-bias diagram 
shows directly the probability of the observation (the zero error 
line in the box plots) falling within each portion of the forecast 
ensembles. As discussed, the observation should fall below 
the median forecast 50 percent of the time. If this happens 
less than 50 percent of the time, this means that the ensemble 
median tends to underforecast the observation. Furthermore, 
the observation should fall below the 10

th
 percentile forecast 

10 percent of the time, and below the 90
th
 percentile forecast 

90 percent of the time.   
This perfectly reliable forecasting system is 

represented by the y=x line in the spread-bias diagrams. The 
extent to which the forecasts are unreliable due to spread and 
bias problems determines how much the forecasts deviate 
from y=x. In this case, the forecasts were more horizontal than 
y=x. This is a result of both underspreading and conditional 
bias, as was seen in the box plots. An overspread forecast 
system (underconfident) would have a spread-bias diagram 
with a steeper slope than y=x.  
 These plots confirm that underspreading was more 
severe at shorter lead times than at longer lead times (Fig. 8), 
since the 54 hour lead time spread-bias diagrams have slightly 
less of a slope than the 84 hour lead time plots. The 6 hour 
lead time plots (not shown) were almost completely flat, with 
very few of the observations ever falling within the extremely 
narrow ensemble spreads. Since all spread within these 
ensemble river forecasts are due to spread within the 
precipitation and temperature inputs, it makes sense that 
underspreading would decrease with lead time due to 
accumulating increase in spread. Also, the spread-bias 
diagrams confirm that underspreading was more severe at 
Meshoppen, PA than at Cortland, NY.  

Spread-bias diagrams are capable of showing a 
conditional reliability of the forecasting system (Brown 2010). 



A forecasting system cannot be perfectly reliable unless the 
observations have an equal chance of falling within every 
portion of the ensemble distributions. The key conclusion from 
the spread-bias diagrams is that underspreading and 
conditional bias affected the reliability of the forecasting 
system, resulting in overconfident forecasts. Ensemble post-
processing to correct biases and increase spread could 
improve these results. 

  
a) Lead Time 54 hours 
 

 
 

b) Lead Time 84 hours 

 
 

 
Figure 8: Spread-bias diagrams for SREF-based streamflow forecasts 
for November 2008 through November 2011 at four locations, at lead 
times (a) 54 hours and (b) 84 hours.  
 

d) Reliability and Discrimination  

 
 Reliability diagrams (Fig. 9) provide a more strict 
evaluation of reliability than the spread-bias diagrams for a 
particular flow threshold. In this case, the exceedence of the 
95

th
 percentile observed flow was chosen, which had a sample 

size of around 200 observed cases. An ideal sample size 
would be even larger, but this indicates why a higher flow 
threshold such as flood stage could not be meaningfully 
analyzed.  

In the reliability diagrams analyzed, there were three 
bins, one for forecasts that predicted a high chance of 
exceedence, one for forecasts that predicted a moderate 
chance of exceedence, and one for forecasts that predicted a 
low chance of exceedence. The number of cases in which a 
low chance was forecast was near 4000, and the sample size 
of the other two bins was 100-200. The sample sizes were 
plotted in the upper left hand corner of each diagram (Fig. 9) 
on a log scale, which emphasizes the differences between the 
moderate and high chance bins. An average forecast 
probability was computed for each bin, and these were roughly 
90 percent, roughly 50 percent, and roughly 0 percent for the 
three bins. The reliability diagram compared these forecast 
probabilities to the average observed probabilities. A 
forecasting system perfectly reliable at predicting the threshold 
flow would have forecasted probabilities the same as the 
observed probabilities, which would yield a reliability diagram 
that matches y=x.  
 These reliability diagrams indicated a tendency to 
overforecast the chance of exceeding the threshold both when 
a near 90 percent chance is forecast and when a near 50 
percent chance is forecast. The accuracy of the near 0 percent 
chance is very good, since there are thousands of cases in 
which the flows were low and it was very easy for the SREF to 
discern that no heavy precipitation events were coming. The 
handful of cases noted on the box plots where a highwater 
event occurred but was underforecast were overwhelmed in 
the reliability diagram by the thousands of correctly forecast 
low flow events. However, closer inspection revealed that in 
most cases, when a near 0 chance of exceeding the threshold 
was forecast, the observed chance was slightly higher. These 
reliability diagrams overall indicated, as did the spread-bias 
diagrams, an overconfident forecast system: when the 
forecast system expected a high chance of exceeding the 95

th
 

percentile flow, the actual chance was not as high. However, 
this conclusion may not be statistically significant due to the 
sample size, and an analysis of confidence intervals (which is 
planned beyond this paper) would be necessary to make that 
determination. 
 
 
 



 
 
Figure 9: Reliability diagrams for SREF-based streamflow forecasts 
for November 2008 through November 2011 at four locations, at lead 
time 84 hours. These diagrams indicate the reliability of forecasting 
the exceedence of the 95

th
 percentile observed flow at each site. In 

these plots there are three bins, one with a forecast probability near 0, 
one near 50 percent and one around 90 percent. The plot in the upper 
left corner of each diagram indicates the sample size of each bin, on a 
log scale. The y=x line indicates a perfectly reliable forecast, in which 
forecasted probabilities and observed probabilities are the same.  
 

 Event discrimination was investigated using ROC 
plots (Fig. 10). These ROC plots were for the same 95

th
 

percentile observed flow threshold that was used in the 
reliability diagrams. They indicated the probability of detection 
(POD) compared to the probability of false detection (POFD) 
of exceeding this threshold flow. This was repeated for various 
“decision thresholds” or binary classifiers at which the forecast 
probability is interpreted as predicting that the threshold will be 
exceeded (yes/no). In this context, there is a trade-off between 
correctly detecting occurrences (having a low detection 
threshold) and falsely detecting non-occurrences. The line y=x 
in this case indicates the “random guess” or climatological 
frequency, where the POD and POFD are the same. A perfect 
ROC curve would have all points in the upper left corner, at a 
POD value of 1.0 and POFD of 0.0. In this case, the ROC 
curves were near the upper left corner, indicating that the 
forecasting system had a strong ability to discriminate 
between the occurrence and non-occurrence of the threshold 
event. Thus, despite the lack of perfect reliability, driven by the 
overconfidence and conditional biases, these SREF forecasts 
are considerably more skillful (discriminatory) than climatology 
(Fig. 10).  
 The probability of detection at higher decision 
thresholds appeared to differ between forecast locations. At 
Farmville and Richmond, the highest POD was only around 
0.75, whereas at Cortland and Meshoppen the highest POD 
was around 0.9. Another interesting result was that the event 
discrimination was high for a range of forecast lead times, and 
did not appear to decrease substantially between lead time 54 
hours and 84 hours. The statistical significance of these 

conclusions through confidence interval analysis will be 
investigated in the ROC plots as well in future work.  
 
a) Lead Time 54 hours 
 

 
 

b) Lead Time 84 hours 

 
 

Figure 10: ROC plots for the 95
th
 percentile flow threshold of SREF-

based streamflow forecasts for November 2008 through November 
2011 at four locations, at lead times (a) 54 hours and (b) 84 hours.  
 
 
 

 
 
 
 
 



 
 
3. CONCLUSIONS 

 
 Verification of streamflow forecasts from the 
ensemble river forecast system has been completed at several 
locations in the Middle Atlantic RFC. Concentration was on the 
SREF-based ensemble forecasts, since four forecasts per day 
were archived for a three year period, November 2008 through 
December 2011. There was only one year of GEFS and 
NAEFS based forecasts. However, comparisons of the SREF, 
GEFS and NAEFS for this one year period yielded fairly 
similar results. There was an issue with the SREF-based 
forecasts on days 1 and 2, which is likely related to the 15Z, 
21Z, 3Z, and 9Z start times  (when compared to the 0Z 
6Z,12Z, and 18Z times of the Middle Atlantic RFC operations) 
which must be investigated further. However, by lead day 3, 
the SREF based simulations had very similar mean biases to 
the GEFS and NAEFS based simulations. Out to lead time 
168 hours, GEFS and NAEFS had very similar negative 
biases in the ensemble mean forecast, although the spread of 
the GEFS based ensembles was less than that of the other 
two.  
 Overall, there was considerable difference between 
forecast points, especially in probabilities of detection and in 
biases. Much of this difference can be attributed to errors in 
the streamflow models and the lack of accounting for 
hydrologic uncertainties. Model biases in baseflow recession, 
routing, runoff efficiency, snowmelt parameters all cause 
uncertainties in the river forecasting that are not captured by 
simply varying the inputs of precipitation and temperature. In 
addition to causing differences in forecast skill at different 
points, this hydrologic uncertainty also resulted in biases and 
underspreading in the streamflow ensemble forecast at all 
forecast points. One possible method for improving the 
forecasts would be ensemble post-processing, to correct 
biases and increase spread appropriately to attempt to 
artificially account for and correct for some of the hydrologic 
uncertainties and biases that the hydrologic ensembling  
method does not address.  
 Underspreading and conditional biases resulted in 
some lack of reliability in these forecasts. This means that 
when these ensembles forecast a particular chance of 
exceeding a certain river level, the actual chance may be 
different. This is a problem that should be corrected to improve 
the forecasts. Discrimination could also be improved, since 
neither probabilities of detection nor probabilities of false 
detection were perfect. However, the forecast discrimination is 
high, since probability of detection is much greater than 
probability of false detection.  
 Some of the conclusions of this paper could be 
strengthened by assessing the statistical significance of the 
verification results. For example, we cannot say whether the 
deviation of the reliability diagrams from perfect reliability is 
significant. EVS has the capability of plotting confidence 
intervals, using a bootstrap sampling method. This will be 
explored in future work.  
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