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ABSTRACT 

Smart Grids are electric grids which intelligently respond to the behavior and actions of 
producers and consumers of electric power. Weather information is critical to several 
aspects of Smart Grids. For instance, energy consumption may be high on a hot summer 
afternoon, but drop off dramatically if thunderstorm outflow cools the region. 
Knowledge of the current state of the atmosphere and accurate predictions on the time 
scales of days, hours, and minutes can enable energy producers to optimally schedule 
their generation resources. In Smart Grids, weather information is coupled with GIS-
based asset management systems to precisely estimate customer demand and 
generation needs. Additionally, it allows grid operators to assess the areas of weather 
anticipation, energy supply and consumption monitoring, and outage management. 

 

1. SMART GRIDS 

Smart Grids are electric grids which intelli-
gently respond to the behavior and actions of 
producers and consumers of electric power. 
They are intended to make electricity more 
reliable, less expensive, and to enhance the use 
of renewable resources. GE Energy and 
Weather Decision Technologies, Inc. (WDT), 
are working to mitigate weather impacts on 
Smart Grids.  

We have identified a number of ways in which 
weather can impact electric grids. First, unan-
ticipated weather can affect the scheduling of 
power resources. As an example, an afternoon 
thunderstorm may cool down temperatures 
over a metropolitan area. If the event is not 
foreseen, a utility may overschedule resources, 
at increased cost to it and its customers. Other 
examples include changes in cloud cover 
(affects temperature and solar energy produc-
tion), wind ramps (affects wind energy produc-
tion), and excessive heat (limits capacity of 
transmission lines). In the same vein, accurate 

forecasts allow optimum use of renewable 
resources. 

Second, infrastructure can be damaged by 
extreme weather. Transmission lines are typi-
cally affected by ice accumulations, high winds, 
and tornadoes. Lightning strikes can damage 
transformers and substations. Even bird drop-
pings can accumulate to the point where arcing 
occurs in high relative humidity. On the other 
hand, adequate notice of favorable weather 
allows for maintenance to be scheduled with 
minimal impact to the grid. 

Weather information is used by Smart Grids in 
two principal ways. First, gridded current and 
future weather information can be coupled 
with GIS-based asset management systems to 
precisely estimate customer demand and 
generation needs. Second, operator control is 
needed in the areas of weather anticipation, 
energy supply and consumption monitoring, 
and outage management. 
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2. WEATHER DATA AND PRODUCTS 

Utilizing a “forecast funnel” approach, we list 
weather events in order of lead time, from a 
few days in advance to the hours and minutes 
leading up to the event. Damage assessment 
and response occurs following the event. 

 
2.1. Average Recurrence Interval (ARI) 

Extreme rainfall can result in flooding and the 
necessity to release water from hydroelectric 
dams. Such events can be placed into a histori-
cal context using the concept of Average 
Recurrence Interval (ARI). Also called a “return 
period,” ARI represents a current precipitation 
event (amount per unit time) as the average 
number of years (climatologically) between 
equivalent events for a specific location. An ARI 
of 100 years is the same as a 1% probability of 
an event occurring in any given year (“100-
year event”). 

Rainfall frequencies have been calculated in 
terms of amount and period (e.g., the probabil-
ity or ARI of 10 inches of rain in 24 hours). 
These frequencies are provided in NOAA Atlas 
14, which is currently undergoing revision at 
the NWS Hydrometeorological Design Studies 
Center (HDSC).  

Metstat and WDT have extended this techno-
logy to produce gridded and forecast ARIs in 
real-time for operational applications. The 
analyses use radar-derived rainfall estimates 
that are adjusted using previous correlations 

with rain gauge data (Parzybok et al., 2011; Fig. 
1). Forecast ARIs are computed using Weather 
Research and Forecasting Model (WRF) rainfall 
predictions (Parzybok and Shaw, 2012). 

 
2.2. Utility Ice Damage Index 

During an ice storm, the combination of ice 
accumulation due to freezing rain, coupled 
with wind, can lead to downed power lines 
resulting in widespread power outages. The 
Tulsa NWS Forecast Office has created an Ice 
Damage Index based on National Digital Fore-
cast Database (NDFD) grids of ice accumulation 
and maximum wind speed (McManus et al., 
2008). We have extended this algorithm to 
work with gridded mesoscale and global fore-
cast model output, and are currently running it 
based on WDT’s operational WRF model runs 
(Fig. 2). 

 
2.3. Avian Drop Zone Index 

In the southern U.S., roosting buzzards can lead 
to the buildup of feces on high-voltage power 
lines. If not periodically cleaned via heavy rain 
or manual washing, arcing can occur in certain 
weather scenarios such as fog, light mist, or 
high relative humidity, leading to widespread 

Figure 2. Maximum Utility Ice Damage Index over 
the  36-hour forecast period ending 0000 UTC 29 
January 2010. 

Figure 1. Average Recurrence Interval (ARI, years) 
for 24-hour rainfall ending 1200 UTC 21 Septem-
ber 2009, computed based on radar data and 
adjusted with rain gauge measurements. 

http://hdsc.nws.noaa.gov/hdsc/pfds/index.html
http://hdsc.nws.noaa.gov/hdsc/pfds/index.html
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outages. WDT has combined its state-of-the 
science gridded precipitation estimates (using 
radar and rain gauge information) with its 
mesoscale NWP output to characterize the 
threat of buildup. By tracking how long it has 
been since heavy precipitation has occurred at 
any location, areas expecting weather 
conditions favorable for arcing can be 
highlighted. The grid operator can then decide 
whether to manually wash threatened line 
segments (Fig. 3).  

 
2.4. Wind and Solar Forecasting 

Renewable energy components such as wind 
and solar present an additional challenge in 
that both the power demand and the genera-
ting capacity depend on the weather. For 
instance, a cold front may dramatically affect 
wind farm output while concurrently affecting 
demand due to changes in temperature and 
cloud cover. 

Wind and solar forecast systems are generally 
built on mesoscale forecast models such as 
WRF. The output of these models is tuned 
based on the validation of previous forecasts. 
Wind forecasts are often “downscaled” to 
match the terrain of the wind farm. Solar fore-
casts are improved by knowledge of aerosols 
and pollutants. 

2.5. Severe Weather Nowcasting and Alerting 

WDT’s comprehensive asset monitoring and 
alerting system uses GIS techniques to deter-
mine if monitored assets (custom locations 
specified by the user, such a power substations, 
operations centers, wind farm locations, etc.) 
are within a weather watch, warning or 
advisory issued by the NWS. Additionally, WDT 
provides custom alerts not provided by the 
NWS, such as lightning, hail (including multiple 
size thresholds), and heavy rain, to include 
estimated time of arrival and departure. These 
alerts can be fed directly into operations center 
decision support tools as well as sent directly 
to individuals via email and text messaging.  

Methods of pure time extrapolation using a 
series of observed precipitation measurements 
or radar mosaics generally produce much more 
accurate forecasts in the 0-3 hour time frame, 
with skill dropping to that of NWP models near 
the 6 hour forecast. One such scheme for pre-
cipitation nowcasting is the McGill Algorithm 
for Precipitation nowcasting by Lagrangian 
Extrapolation (MAPLE), developed at McGill 
University. This algorithm has been used 
operationally by WDT since 2003 to drive 
nowcasting product generation.  

WDT uses real-time, high-precision lightning 
strike information to provide time-critical 
alerts of lightning hazards via its Lightning 
Decision Support System (LDSS™), which is 
used extensively within power grid operations 
centers as a stand-alone display and alerting 

Figure 3. Avian Drop Zone Index over a portion of 
north Texas on 8 December 2011. The scale is 0 
to 15+ (red), nominally representing the number 
of days since transmission lines have been 
cleaned via heavy rain. 

Figure 4. WDT iMapPro display of lightning 
strikes, 1-hour LightningPredictor™ project-
tions (orange shading), and radar mosaic. 
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system. The lighting data consisting of time, 
location, and strength information can be 
readily integrated into Smart Grid technologies.  

In addition, WDT’s LightningPredictor™ is able 
to project the lightning threat up to one hour 
into the future by combining observed light-
ning density with motion vectors from MAPLE 
(Fig. 4). Beyond one hour, WDT produces 
NWP-based lightning potential, and all of these 
outlook products can be integrated as shapes 
or grids within Smart Grid software solutions.  

 
2.6. Tornadic Circulation Track 

Mesocyclones (rotating supercell thunder-
storms) are associated with severe downburst 
winds and tornadoes. They can be readily 
identified in radar data by their rotation signa-
ture. By examining a series of radar data, a 
tornadic circulation (or mesocyclone) track can 
be determined. WDT’s product examines the 
mean wind shear in the lowest 3 km of the 
atmosphere. Results from multiple radars are 
mosaicked onto a 500-m CONUS grid  which is 
updated every 2 minutes (Baranowski et al., 
2012; Fig. 5). The algorithm is being enhanced 
using data from dual-polarimetric radars as 
those data become available (Porter et al., 
2012). The product thus serves as an automa-
ted, real-time “damage survey.” In contrast, 
spotter and public reports of tornadoes and 
damaging winds are sparse and often contain 
location errors.  

 

3. SMART GRID INTEGRATION 

GE Energy and WDT are exploring ways to 
mitigate weather impacts on Smart Grids. 
Weather information is presently utilized by 
utility operators in the form of current-day and 
day-ahead forecasts, which include load fore-
casts and renewable generation forecasts for 
up to 24 hours (Ruzic et al., 2003). Because 
actual weather can vary significantly at a local 
level, the integration of radar data, lightning 
strike locations, and very-short-term weather 
predictions (up to one or two hours ahead) into 
Smart Grid control systems helps utilities anti-

cipate electrical outages and equipment fail-
ures within a well-defined geographical region.  

 
3.1. Algorithmic Input 

By combining weather predictions and histori-
cal patterns with the geographical locations of 
power lines, consumers, outages, and wind and 
solar farms, new predictions become available 
to electric utilities in terms of outages, 
reliability, and operational effectiveness. 

Combining local weather predictions with 
electric power equipment management is 
possible because many utilities track power 
lines, distribution transformers, circuit brea-
kers, and so on, using GIS-based asset manage-
ment systems. The shared information is the 
location of assets and weather events. Also, 
unlike power transmission which connects 
regions together, power distribution is 
typically bound to a limited geographical area. 
By recording over time the effects of similar 
weather events on energy consumption and 
supply, heuristics can be established to 
quantify the impact of a decrease in wind speed 
or a rise in temperature on the power grid. 
Short-term weather forecasts enable utilities to 
anticipate weather impacts to the grid and 
improve responsiveness. 

Figure 5. Tornadic Circulation Track and storm 
reports in northern Alabama on 27 April 2011. 
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The input forecast grids are derived from 
forecasts based on the Advanced Research 
WRF (ARW) and other models. The WRF fore-
casts are initialized using a combination of the 
Local Analysis and Prediction System (LAPS) 
and Four-Dimensional Data Assimilation 
(FDDA).  

 
3.2. Operator Control 

Electric power distribution lines are organized 
into “feeders” that carry electric power supply 
from a transmission substation to arterial 
roads and neighborhoods.  Distribution feeders 
normally do not affect each other and are thus 
operated independently of each other. 

Weather predictions for individual feeders as 
related to renewable resource availability, local 
cloud cover and temperature, and storm path 
become a new decision factor for electric utility 
operators (Figure 6). Decisions assuming 
uniform weather forecasts are now framed 
within high-resolution predictions of storm 
paths, local wind gusts, microclimates, and bird 
activity. The availability of local predictions 
allows operators to tailor an effective response 
to meet the needs and weather exposure of 
individual distribution feeders. 

1) Weather Anticipation 

Anticipation of exceptional weather events 
such as winter storms is the first step in 
operator control. Weather event preparation 
has several implications : 

 People adapt their activities and travel 
plans according to the weather (e.g., by 
staying at home when roads are icy). 

 Business activity may change during 
weather events based on the availability of 
workers and supplies, and visitor activity. 

 In certain areas, consumption may increase 
above typical levels as a result of people 
changing their activities and travel plans. 

The loading conditions on the power grid are 
different during severe weather and may result 
in widespread outages. Utilities that are aware 
of possible widespread outages can dispatch 
crew and perform preparatory work in 
advance of the weather event and reduce the 
severity of the impact of weather.  

2) Energy Supply and Consumption Monitoring 

Supervisory control and data acquisition 
systems (SCADA) provide measurements 
informing operators of energized and de-ener-
gized neighborhoods in real-time. Overlaying 
weather information with real-time measure-
ments allows operators to witness the effects 
of local weather events such as intermittent 
cloud cover and storm damage, as they relate 
to electricity supply and consumption. Weather 
impacts may be particularly significant in 
power grids with high solar and wind farm 
penetration. 

Figure 7. Conceptual overlay of weather and 
electrical power system showing tornado track 
detections (shading), tornado reports (triangles), 
power outages (diamonds), generating facilities 
(G), substations (sub), and main transmission 
lines (black and red dotted). 

Figure 6. Timeline for weather products (top) and 
operator response (bottom). 
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3) Outage Management 

Finally, Outage Management Systems (OMS) 
centralize outage decisions and dispatch repair 
crews. Weather data offer formal evidence to 
determine whether outages are caused by 
weather events or by other reasons. With this 
insight, operators can dispatch crews 
according to outage causes (Figure 7). 
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