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1. INTRODUCTION

Ensembles of numerical weather
prediction (NWP) models are used to predict
the range of possible future atmospheric
states, and the corresponding forecast
uncertainty. How best to configure NWP
ensembles is an area of active research in the
community. First, there are many practical
issues that need to be considered: How many
members should be in the ensemble? What
NWP model(s) should be used? What
horizontal and vertical resolution should be
employed? What area should the domain(s)
cover? What should be the forecast
duration? Sacrifices often have to be made in
one or more of those considerations because
of computational limitations, whether in
research or operations.

When configuring or evaluating an
ensemble system, effort should be made to
ensure that the ensemble forecasts are
calibrated. If an ensemble is perfectly
calibrated, then the ensemble variance and
the ensemble-mean error variance will match
(Grimit and Mass 2007; Kolczynski et al. 2009,
2011). Even when attempting to account for
various sources of error, however, most
ensembles are still under-dispersive and thus
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require calibration (Raftery et al. 2005). This
is true even for very large ensembles
(Kolczynski et al. 2011). NWP ensembles
must therefore be “dressed” with statistical
estimates of the true error distribution via
post-processing (Roulston and Smith 2003).
When configuring an NWP ensemble,
there are also many possible approaches for
representing  forecast uncertainty and
variability. While initial condition (IC) and
lateral boundary condition (LBC) uncertainty
certainly play a large role in NWP forecast
errors, model error is an important source of
error in NWP ensembles, particularly for
short-range forecasts (e.g., Stensrud et al.
2000; Fujita et al. 2007; Clark et al. 2008).
There are two main types of model error: one
stems from lack of knowledge about the
processes that are being modeled, and the
other stems from uncertainty in the values of
the model parameters themselves. Thus
there are several approaches to representing
model error, including multimodel,
multiphysics, and stochastic perturbation
ensembles, or combinations thereof (e.g.,
Eckel and Mass 2005; Hacker et al. 2011).
When constructing a  multiphysics
ensemble, it is not clear a priori what sets of
physics schemes are the best to choose. For
instance, in the Weather Research and
Forecasting (WRF) NWP model, there are
hundreds of possible combinations of physics
schemes to choose from. Previous research



proposes an objective method to choose, or
“down-select,” a subset of 14 ensemble
members that represent the forecast
probability density function (pdf) nearly as
well as the full ensemble of 24 WRF members
(Lee et al. 2012). The post-processing
method used in that study is principal
component analysis (PCA). PCA is not the
only possible technique for down-selection,
however. In this study we use a larger WRF
multiphysics ensemble of 42 members that
has variability in more types of physics
schemes than Lee et al. (2012), and we also
compare PCA with another candidate down-
selection method, k-means clustering. In
both Lee et al. (2012) and this study, Bayesian
model averaging (BMA; Raftery et al. 2003,
2005) is used to calibrate the forecasts for the
full ensemble and to dress the down-selected
subset ensembles.

We discuss our ensemble configuration
and verification procedures in section 2. In
section 3 we demonstrate our down-selection
techniques, PCA and k-means clustering. We
describe calibration with BMA in section 4.
We present verification results in section 5.
Section 6 summarizes the study and suggests
extensions.

2. DATA
2.1 Ensemble configuration

We choose to configure a multiphysics
ensemble that uses the same ICs/LBCs to
isolate the effects model error for two
reasons. First, it is not clear how any down-
selection approach would be physically
meaningful if it were applied to an ensemble
with only equally likely IC/LBC random
perturbations, because members would then
be exchangeable and statistically
indistinguishable (Fraley et al. 2010). A
second reason for this choice is that one of

the goals of this study is to define a small set
of physics members that could be used in a
later ensemble that would also have IC/LBC
variability included.

Our 42-member physics ensemble is
created with version 3.3 of the Advanced
Research  WRF (WRF-ARW) NWP model
(Skamarock et al. 2008). At least three
different options are used for each type of
physics scheme in the ensemble, as detailed
in Table 1. Skamarock et al. (2008) contains
details and references for all the
parameterization schemes we use. We use a
slightly modified version of the Mellor-
Yamada-Janjic (MYJ) ABL scheme, as in Lee et
al. (2012).

The coarse domain uses a horizontal grid
spacing of 36 km, while the one-way nested
fine domain uses 12-km grid spacing. The
geographic area spanned by the domains can
be seen in Fig. 1. In this study we use time
steps of 90 s and 30 s. The vertical resolution
is identical to that of Lee et al. (2012). There
are 45 full vertical levels in each simulation,
with high vertical resolution in the lowest 2
km so that we can resolve processes in the
atmospheric boundary layer (ABL) well.

We initialize the 48-h forecasts every fifth
day at 0000 UTC starting on 1 Dec 2009, and
continuing through Feb 2010, for a total of 18
forecast periods during this winter evaluation
period. Table 2 lists all the initialization dates
for these forecasts. No data assimilation is
used in this study because we desire to
simulate a forecasting system.

The LBCs for all 42 members in this study
come from the 0.5°x0.5°-resolution Global
Forecast System (GFS) forecast cycles
initialized at each of the simulation times.
We use sea surface temperature (SST)
analyses from the National Centers for
Environmental Prediction (NCEP) real-time
global 0.083° dataset. We use daily snow
analyses from the National Environmental



Satellite, Information Service
(NESDIS).

The ICs use the 0-h GFS forecast and are
blended with standard WMO observations to
produce a more accurate initial state. We use
the Obsgrid objective analysis software to
perform this blending. Obsgrid is part of the
WRF modeling system and developed by the
National Center for Atmospheric Research
(NCAR), and uses multiple passes of the
objective analysis scheme to modify the first-
guess field (NCAR Mesoscale & Miscroscale
Meteorology (MMM) Division 2011, chap. 7).
In Obsgrid we use the Cressman objective
analysis scheme, assigning each observation a
distance-weighted flow-dependent radius of
influence (Cressman 1959).

Data, and

2.2 Verification and quality control

All  post-processing, verification, and
analysis is only performed on the inner 12-km
domain.

We use standard WMO surface and
upper-air observations to verify our WRF
ensemble forecasts. We quality control these
observations against the GFS analysis fields
that are interpolated by the WRF Pre-
processing System (WPS), using Obsgrid as
described above and in Lee et al. (2012).

Of the 18 forecasts we create for the
winter evaluation period, the first 12 are used
as training data for both the down-selection
process and for calibration. The remaining six
forecasts are set aside for verification (Table
2). We recognize that training on only 12
forecast periods is less than ideal, as Raftery
et al. (2005) use 25 forecast periods to train
their Bayesian model averaging (BMA)
calibration technique. In the future we plan
to have a longer WRF ensemble dataset
available to use.

The observations used in this study are
temperature and wind at the surface and the

mandatory levels of 925 hPa, 850 hPa, and
700 hPa. Model predictions are horizontally
and vertically interpolated to the observation
locations. We perform verification on wind
direction, wind speed, vector wind difference,
and the zonal (u) and meridional (v)
components of the wind. We also only
examine the forecasts at four lead times: 12
h, 24 h, 36 h, and 48 h. We do this because
these are the only times for which standard
radiosonde observations are available.

We use root-mean squared error (RMSE)
as our deterministic verification metric and
continuous ranked probability score (CRPS) as
our probabilistic verification metric. RMSE
assesses accuracy and is defined as:

RMSE = /%i(fi—oi)z (1)

where o is the value of the observation i, f
is the forecast value at the time and location
of observation i, and N is the total number
of observations. The CRPS assesses both
accuracy and sharpness and is defined as
(Wilks 2006):
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where p/(x) is the forecast cumulative

probability of the forecast variable being < x
at the space-time location of observation i,
and all other variables are as before. Both
RMSE and CRPS are negatively oriented, with
zero representing a perfect score for both.

3. ENSEMBLE DOWN-SELECTION
TECHNIQUES

The goal of our ensemble down-selection
techniques is to retain the subset of
ensemble members that span the uncertainty



space of the forecast but to eliminate those
that are most redundant. We do this because
ensembles are most useful when members
each sample a different portion of the
atmospheric probability density function
(pdf). In this study we compare two
techniques for down-selection, principal
component analysis and k-means cluster
analysis.

3.1 Principal component analysis

PCA and its application as a down-
selection technique is discussed more
completely in Lee et al. (2012), but we briefly
describe it here for clarity. PCA is a
mathematical technique that reduces the
dimensionality of a dataset from K variables
to N variables (N < K) (Jolliffe 2002; Wilks
2006; Witten and Frank 2005). The N new
variables are the principal components (PCs),
and are mutually orthogonal. Additionally,
each PC is a linear combination of all K old
variables; in this study, the 42 ensemble
members are themselves the K variables. PCs
are also ordered so that each PC (PCy, PC,,
PCs, etc.) accounts for the greatest amount of
remaining variance in the original dataset,
subject to orthogonality with all previously
defined PCs. Therefore, PCA allows for a
given amount of variance to be explained by
the minimum number of vectors.

For this study we use MATLAB to perform
PCA on the forecast errors during the 12-
forecast training period (Table 2). We
perform PCA separately for each forecast lead
time (12 h, 24 h, 36 h, 48 h), and separately
for temperature errors and vector wind
difference (VWD). For both temperature
errors and VWD we combine all levels
(surface, 925 hPa, 850 hPa, 700 hPa) into a
single bin at each lead time.

For each lead time/variable combination
we tally each member that is the top

contributor to each PC that individually
explains at least 2.0% of the error variance of
the ensemble. Thus we define two candidate
down-selection subsets from PCA: subset
PO7W, a seven-member subset determined
by PCA on wind vector errors; and subset
PO7T, a seven-member subset determined by
PCA on temperature errors. Lists of members
that are included in the down-selection
subsets appear in Table 3.

The members in subset PO7W have
diversity in most types of physics schemes,
except for the land surface scheme, where six
of the seven members selected use the Noah
land surface scheme. Six of the seven
members in subset PO7T also use the Noah
land surface scheme, and all seven members
use the Kain-Fritsch cumulus scheme. This
seems to imply that the Noah land surface
scheme contributes substantially to the
variance of the temperature errors and VWD,
and that the Kain-Fritsch cumulus scheme
also contributes substantially to the variance
of temperature errors.

It should also be noted that all 42
members contributed nearly equally to the
first PC for VWD. Moreover, the first PC for
VWD at all four lead times explained between
87-89% of the total variance (for temperature
errors, the first PC contains 74-81% of the
variance). Therefore for VWD, it does not
appear that any one member contains the
bulk of the error variance. This may indicate
a weakness of PCA for identifying sources of
variability in this ensemble, or may indicate
that there is very little variability in VWD
across the entire ensemble over the 12-
forecast training period.

3.2 K-means cluster analysis
Cluster analysis is a post-processing

technique by which similar data are grouped
together. The grouped data are called



clusters. Several studies use various cluster
analysis techniques to group similar members
in an NWP ensemble forecast (e.g., Legg et al.
2002; Alhamed et al. 2002; Yussouf et al.
2004; Johnson et al. 2011). There are several
types of cluster analysis, including K-means
clustering. K-means cluster analysis is a non-
hierarchical clustering technique, which
means that data can be reassigned to
different clusters on successive iterations
through the algorithm. K-means is also the
most commonly used non-hierarchical
clustering method (Wilks 2006).

We perform clustering separately at each
of the four lead times for both temperature
errors and VWD at all four levels during the
12-forecast training period (Table 2), as we do
for PCA. The MATLAB algorithm used for
performing K-means clustering is as follows:

1) Specify the number K clusters that are
in the data; therefore, a range of
values for K must often be tested.

2) Split the N data vectors (temperature
errors or VWD for each ensemble
member at all O observation

locations) into an initial guess at
membership in K clusters. In our
study we determine these by

randomly selecting K data vectors to

serve as seeds, or initial cluster
centroid positions.
3) Calculate the absolute distances

between each data vector and cluster
centroid, and assign all data vectors at
once to the nearest cluster.

4) Re-calculate all cluster centroids.

5) Repeat steps 3 and 4
convergence is achieved.

6) Complete a pass through the data
vectors, and individually reassign a
data vector to a different cluster if
doing so results in a smaller sum of
distances.

until

7) Re-calculate cluster centroids after
each reassignment.

8) Repeat steps 6 and 7 until there are
no more reassignments.

Each replicate of this algorithm will yield a
local minimum, but is not guaranteed to find
a global minimum of the total sum of data-
centroid distance in all O dimensions.
Therefore a large number of replicates are
generally necessary to increase the
probability that the global minimum will be
found. In this study we use 5,000 replicates
of the clustering algorithm, and report results
from the case with the smallest total sum of
data-centroid distances.

In this study O > 3000 for all four lead
time-variable combinations. While the
clusters cannot be visualized in the full 3000+
dimensions, they can be visualized in two
dimensions, by comparing the errors for two
of the observations, and the components of
the centroid positions in those two
dimensions. One such visualization, for VWD
clusters at a lead time of 48 h, is shown in Fig.
2. While the ensemble members (closed and
open circles) may not be closer to other
centroids (rotated and upright crosses) in
these two dimensions, one should keep in
mind that the clusters are determined
according to minimizing data-centroid
distance in all O dimensions, not just these
two dimensions.

While clusters may technically be
populated by only one data vector, for this
study we require that a cluster must contain
at least two ensemble members to be
considered valid. For both variables we test a
range of numbers of clusters, to find the
largest number of clusters that does not have
any single-member clusters across all four
lead times. In this way we determine there to
be ten clusters for VWD and eight clusters for
temperature errors. When an individual



member is assigned to different clusters at
different lead times, we consider it to belong
to the cluster to which it was assigned for the
majority of the lead times. Tables 4 and 5
contain lists of the ensemble members that
belong to the various clusters for VWD and
temperature errors, respectively.

One of the strengths of K-means cluster
analysis is that the clusters are generally
amenable to straightforward physical
interpretation, as members within each
cluster share certain characteristics. For both
sets of clusters the common thread among all
members within each cluster is a common
land surface scheme, ABL scheme, or both.
Additionally, some of the clusters for
temperature errors and VWD are identical. In
some clusters the members also share the
same microphysics, radiation, or cumulus
schemes, but that is not true universally.
These observations indicate that the choice of
land surface and ABL scheme have the
greatest influence on predictions of low-level
temperature and wind. This implies that an
ensemble should at least contain diversity in
land surface and ABL schemes.

To configure candidate down-selection
subset ensembles from these clusters, we
randomly choose one member from each
cluster. In future work we will compare this
random selection with other selection
methods, such as choosing the ensemble
member that is closest to the cluster
centroid. The VWD K-means subset is subset
K10W, and the temperature errors K-means
subset is subset KO8T. The members that
comprise both subsets K10W and K10T are
listed in Table 3.

4. ENSEMBLE CALIBRATION
We use Bayesian model averaging (BMA;

Raftery et al. 2003) to “dress” the full
ensemble and all down-selected ensembles

to better approximate the pdf of the forecast
distribution (Roulston and Smith 2003). BMA
estimates the weights and parameters for
each ensemble member, and then during a
training period (12 forecast periods in this
study), these weights and parameters are
trained to best match the observations. The
BMA weights and standard deviations are
then applied to forecasts in a verification
period to create a better ensemble forecast
pdf.

We perform BMA on the temperature and
on the zonal (u) and meridional (v) wind
component forecasts at each forecast lead
time (12, 24, 36, and 48 h) and for each level
(surface, 925 hPa, 850 hPa, and 700 hPa). As
in Lee et al. (2012) and Raftery et al. (2005)
we assume a normal distribution for the
temperature. Lee et al. (2012) assume a
normal  distribution for both  wind
components separately, but here we assume
a bivariate normal distribution for the wind
components, and perform BMA on the u and
v together at each level and lead time. As in
Lee et al. (2012) we also perform a single
domain-wide bias correction and calibration
for each variable at each lead time and level.

A benefit of using BMA to dress the pdf is
that the relative values of the weights provide
a rough indication of the relative importance
of the various schemes. The optimal BMA
weights for 2-m temperature forecasts are
displayed as a donut chart in Figure 3 as an
example. Interestingly, in contrast to the
finding in Lee et al. (2012) over a summer
training period that the members with the
Noah land surface scheme had the highest
BMA weights for 2-m temperature forecasts,
in this study over a winter training period the
members with Noah all have the smallest
BMA weights, while the members with the
thermal diffusion land surface scheme have
the largest weights. This seems to imply, at
least in a relative sense, that the Noah land



surface scheme performs more poorly in
winter than in summer among the selected
schemes, with the converse true for the
thermal diffusion scheme. There is also a
discernible trend in weights for 2-m
temperature according to the choice of ABL
scheme, but less pronounced than the trend
involving land surface schemes. Members
with the YSU boundary layer scheme had
higher weights than members with the ACM2
scheme. Members with the MYNN-2.5
scheme had the lowest weights, except when
paired with the RUC land surface scheme;
among those members, the members with
the MYJ ABL scheme had the lowest weights.
There are no discernible trends in the weights
with other physics schemes.

The BMA weights for 10-m wind also
exhibit a signal among the various ABL and
land surface schemes, with the highest
weights occuring for the members using the
MYNN-2.5 ABL scheme, followed by ACM2, as
shown in Figure 4. The land surface schemes
yield a secondary signal, with RUC having
larger weights, and Noah having smaller
weights.

At 925, 850, and 700 hPa, for both
temperature and wind components, the
weights tend to become more similar to each
other, although there are still some weak
differences in weights between members
with different land surface and ABL schemes.
Above the surface, the RUC land surface and
YSU ABL schemes tend to yield the highest
weights, both for temperature and wind. The
stronger signals apparent at the surface as
well as the weaker signals aloft indicate that,
consistent with Lee et al. (2012), varying the
choice of ABL scheme and land surface
scheme appears to add to variability in the
ensemble for low-level wind and temperature
forecasts.

5. RESULTS

We calculate RMSE and CRPS for both the
full 42-member ensemble and each of the
four ensemble subsets defined above, K10W,
KO8T, PO7W, and PO7T (Table 3), over the six-
forecast verification period. First we examine
the RMSE and CRPS for the wind and
temperature for the impact of calibration.
For the wind components, there is little
difference in RMSE between the equal-
weighted and BMA-weighted ensembles, at
both the surface (Fig. 5) and 850 hPa (Fig. 6).
For the v-wind components, the BMA-
weighted ensembles generally have a slightly
lower (i.e., better) RMSE than the equal-
weighted ensembles, but there is no clear
tendency for the u-wind components
between the BMA-weighted and equal-
weighted ensembles. Calibrating the
ensemble via BMA substantially improves the
CRPS for both wind components, however,
both at the surface (Fig. 7) and 850 hPa (Fig.
8), for all ensembles and lead times. These
findings are consistent with Lee et al. (2012),
where calibration also did not substantially
improve RMSE values, but did substantially
improve CRPS values. This suggests that for
the multi-physics ensembles in this study and
Lee et al. (2012), BMA primarily improves the
sharpness of the ensemble pdf, rather than
the accuracy. Even though accuracy does not
appear to be improved much, the
improvement in sharpness still illustrates the
benefit of calibrating an ensemble forecast.

The story is similar for RMSE and CRPS for
850-hPa temperature (Figs. 10 and 12). The
RMSE and CRPS values for 2-m temperature
(Figs. 9 and 11) are much larger than those
for the 850-hPa temperature, however, and
much larger than those for 2-m temperature
over summer 2009 in Lee et al. (2012) as well.
We speculate that this is due to poor
modeling of the surface layer and land



surface in winter, or due to errors in the snow
cover analysis. For instance, if snow cover is
analyzed to be present in the model but there
is no snow cover actually on the ground (or
vice versa), there will be a large RMSE for 2-m
temperature for those locations. We have
not proven that this is the cause of the large
errors in 2-m temperature because it is
outside the scope of this study, however.
Additionally, calibration substantially
improves the performance of the ensembles
here, using both RMSE and CRPS. We suspect
that the large RMSE for 2-m temperature is
what allowed for calibration to have a larger,
more noticeable positive impact.

As for comparison of the candidate
ensemble subsets, the RMSE and CRPS values
show the same trends generally (i.e., when
one subset has a higher RMSE it also has a
higher CRPS), so we focus our analysis on the
CRPS plots. At the surface, the CRPS for both
K-means subsets (K10W and KO8T) is
approximately the same as the CRPS for the
full ensemble. This is true for both 10-m wind
components (Fig. 7) and 2-m temperature
(Fig. 11). At the surface, both K-means
subsets perform better than either PCA
subset (PO7W and PO7T). Therefore, for
surface variables, it appears that using K-
means cluster analysis as an ensemble down-
selection technique yields a forecast pdf
nearly equivalent to the full 42-member
ensemble, while subsets from PCA perform
more poorly.

Above the surface for both wind
components and temperature, subsets K10W
and KO8T still perform nearly as well as the
full ensemble, while subsets PO7W and PO7T
have only slightly higher CRPS values than the
full ensemble at 925 hPa (not shown), and at
850 hPa the CRPS for all the subsets are
approximately the same as the full ensemble
(Figs. 8 and 12). The reason for this
improvement in performance of the PCA

subsets above the surface is difficult to
discern.

Both K-means and PCA down-selection
methods perform well in this study, but the
improved performance at the surface gives K-
means an advantage. It is also clearer
conceptually that selecting one member from
each of several clusters results in better
sampling of the ensemble pdf than PCA,
especially when the PCA technique results (in
this study) in selecting members that, for the
most part, had less diversity in physics
schemes than did K-means clustering. The
ensemble subsets chosen by PCA in Lee et al.
(2012) have greater physics diversity than
does either PCA subset here, and the reason
for this difference is an area of continuing
research. It does indicate that PCA may be a
less reliable method for determining useful

down-selected ensemble subsets when
compared to K-means cluster analysis,
however.

6. SUMMARY

We have created a 42-member WRF
multi-physics ensemble for December 2009-
February 2010 over the northeastern third of
the U.S. We examine and compare two
statistical post-processing techniques,
principal component analysis and K-means
cluster analysis, to use for down-selecting
subsets of members from the full ensemble.
We also calibrate the full ensemble and
subset ensembles with Bayesian model
averaging to dress the ensemble pdf. We
train these post-processing techniques over
twelve consecutive forecasts. We then verify
the wind component and temperature
forecasts at four different levels over six
consecutive  forecasts using root-mean
squared error and continuous ranked
probability score as metrics.



Ensemble calibration is extremely
beneficial. Ensemble calibration with BMA
does not result in values of RMSE that differ
substantially from the equal-weighted
ensembles, except for 2-m temperature,
where BMA substantially improved the RMSE,
although that RMSE is quite large to begin
with. The calibrated full ensemble and subset
ensembles have values of CRPS about 15-20%
lower (better) than the equal-weighted
ensembles, however. Therefore, for this
ensemble, the primary benefit of calibration
appears to be improved sharpness of the
ensemble pdf, though for 2-m temperature,
calibration  substantially improved the
accuracy as well.

The CRPS values for both down-selection
subsets determined by K-means cluster
analysis (K10W and K10T) are similar to the
full 42-member ensemble for both wind
components and temperature, at the surface,
925 hPa, 850 hPa, and 700 hPa. Thus,
choosing one member from each cluster
appears to represent the ensemble pdf well,
with little or no degradation in forecast
quality. The CRPS values for both down-
selection subsets determined by PCA (PO7W
and PO7T) are somewhat degraded for both
wind components and temperature at the
surface, but differ little from the full
ensemble or other subsets above the surface.
The reason for this difference in behavior is
unclear.

The subsets determined by K-means
clustering have a great deal of diversity in
several types of physics schemes. This
physics diversity arises because, in this study,
members that cluster together share a
common boundary layer scheme, land
surface scheme, or both. Therefore, the
members that are chosen as representative
of each cluster use several boundary layer-
land surface combinations, which appears to
account for most of the variability in low-level

wind and temperature forecasts. The PCA
subsets, on the other hand, tend to have
much less diversity in physics. This is one
possible explanation for the PCA subsets
performing more poorly at the surface. While
both down-selection techniques perform
fairly well, the K-means subsets are more
clearly sampling from different parts of the
ensemble pdf.

Because of these factors, it appears at the
current time that K-means clustering is a
more promising and consistent down-
selection technique. More testing needs to
be done in other seasons, however. Testing
of the length of the training period required
for robust results also needs to be performed.
The sensitivity of the down-selection results
to incorporating each above-surface level also
ought to be studied.
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TABLE 1. Physics schemes for the 42-member WRF multiphysics ensemble. Descriptions and
references for schemes are contained in Skamarock et al. (2008).

Exp. # | Microphysics Longwave Shortwave Land Surface Boundary Cumulus
Radiation Radiation Surface Layer Layer

CTL-01 WSM-5 RRTM Dudhia Noah MMS5 Sim. YSU Kain-Fritsch

CTL-02 Thompson RRTM Dudhia RUC Eta Sim. MYJ mod. Grell-Devenyi
10 Thompson RRTM Dudhia Therm. Diff. | MM5 Sim. YSU Kain-Fritsch
11 Morrison New Goddard | New Goddard | Therm. Diff. | MM5 Sim. YSU Grell-Devenyi
12 WSM-6 RRTMG RRTMG Therm. Diff. | MM5 Sim. YSU NSAS
13 Eta (Ferrier) | New Goddard | New Goddard Noah MMS5 Sim. YSU Kain-Fritsch
14 Thompson RRTMG RRMTG Noah MMS5 Sim. YSU Grell-Devenyi
15 Morrison RRTM Dudhia Noah MMD5 Sim. YSU NSAS
16 WSM-6 New Goddard | New Goddard Noah MMS5 Sim. YSU Kain-Fritsch
17 Eta (Ferrier) RRTM Dudhia RUC MMS5 Sim. YSU Grell-Devenyi
18 Thompson New Goddard | New Goddard RUC MMS5 Sim. YSU NSAS
19 Morrison RRTMG RRTMG RUC MMS5 Sim. YSU Kain-Fritsch
20 Thompson RRTM Dudhia Therm. Diff. Eta Sim. MYJ mod. Kain-Fritsch
21 Morrison New Goddard | New Goddard | Therm. Diff. Eta Sim. MYJ mod. Grell-Devenyi
22 WSM-6 RRTMG RRTMG Therm. Diff. Eta Sim. MYJ mod. NSAS
23 Eta (Ferrier) | New Goddard | New Goddard Noah Eta Sim. MYJ mod. Kain-Fritsch
24 Thompson RRTMG RRMTG Noah Eta Sim. MYJ mod. Grell-Devenyi
25 Morrison RRTM Dudhia Noah Eta Sim. MYJ mod. NSAS
26 WSM-6 New Goddard | New Goddard Noah Eta Sim. MYJ mod. Kain-Fritsch
27 Eta (Ferrier) RRTM Dudhia RUC Eta Sim. MYJ mod. Grell-Devenyi
28 Thompson New Goddard | New Goddard RUC Eta Sim. MYJ mod. NSAS
29 Morrison RRTMG RRTMG RUC Eta Sim. MYJ mod. Kain-Fritsch
30 Thompson RRTM Dudhia Therm. Diff. MYNN MYNN-2.5 Kain-Fritsch
31 Morrison New Goddard | New Goddard | Therm. Diff. MYNN MYNN-2.5 | Grell-Devenyi
32 WSM-6 RRTMG RRTMG Therm. Diff. MYNN MYNN-2.5 NSAS
33 Eta (Ferrier) | New Goddard | New Goddard Noah MYNN MYNN-2.5 Kain-Fritsch
34 Thompson RRTMG RRMTG Noah MYNN MYNN-2.5 | Grell-Devenyi
35 Morrison RRTM Dudhia Noah MYNN MYNN-2.5 NSAS
36 WSM-6 New Goddard | New Goddard Noah MYNN MYNN-2.5 Kain-Fritsch
37 Eta (Ferrier) RRTM Dudhia RUC MYNN MYNN-2.5 | Grell-Devenyi
38 Thompson New Goddard | New Goddard RUC MYNN MYNN-2.5 NSAS
39 Morrison RRTMG RRTMG RUC MYNN MYNN-2.5 Kain-Fritsch
40 Thompson RRTM Dudhia Therm. Diff. Pleim-Xu ACM2 Kain-Fritsch
41 Morrison New Goddard | New Goddard | Therm. Diff. Pleim-Xu ACM2 Grell-Devenyi
42 WSM-6 RRTMG RRTMG Therm. Diff. Pleim-Xu ACM2 NSAS
43 Eta (Ferrier) | New Goddard | New Goddard Noah Pleim-Xu ACM2 Kain-Fritsch
44 Thompson RRTMG RRMTG Noah Pleim-Xu ACM2 Grell-Devenyi
45 Morrison RRTM Dudhia Noah Pleim-Xu ACM2 NSAS
46 WSM-6 New Goddard | New Goddard Noah Pleim-Xu ACM2 Kain-Fritsch
47 Eta (Ferrier) RRTM Dudhia RUC Pleim-Xu ACM2 Grell-Devenyi
48 Thompson New Goddard | New Goddard RUC Pleim-Xu ACM2 NSAS
49 Morrison RRTMG RRTMG RUC Pleim-Xu ACM?2 Kain-Fritsch




TABLE 2. Initialization dates in YYYY-MM-DD format for the forecasts used in both the training

and verification periods in this study. All forecasts are initialized at 0000 UTC.

Training Dataset Verification Dataset
2009-12-01 2009-12-31 2010-01-30
2009-12-06 2010-01-05 2010-02-04
2009-12-11 2010-01-10 2010-02-09
2009-12-16 2010-01-15 2010-02-14
2009-12-21 2010-01-20 2010-02-19
2009-12-26 2010-01-25 2010-02-24

TABLE 3. Members that are included in each candidate down-selection subset. Naming

convention is as follows: P or K refers to a subset determined by PCA or k-means clustering; the
number is the number of members included in that subset; and W or T refers to whether the
subset was determined from VWD or temperature errors. Refer to Table 1 for the physics
schemes for each member.

Subset Ensemble Members

PO7W CTLO1, 11, 16, 23, 24, 25, 44

PO7T 10, 13, 16, 23, 26, 33, 46

K10W 10, 15, 18, 21, 25, 29, 30, 36, 39, 43
KO8T CTLO2, 13, 33,37,42,44, 46, 48




TaBLE 4. Clusters of ensemble members from the VWD data. One member from each of these
clusters is randomly chosen for subset KI1OW (see Table 3).

Cluster Ensemble Members
Cluster 1 CTLO1, 13, 14, 15, 16
Cluster 2 CTLO2, 27, 28, 29
Cluster 3 10, 11, 12

Cluster 4 17,18, 19

Cluster 5 20, 21, 22

Cluster 6 23, 24, 25, 26
Cluster 7 30, 31, 32,40, 41, 42
Cluster 8 33, 34, 35, 36
Cluster 9 37,38, 39, 47,48, 49
Cluster 10 43,44, 45, 46

TABLE 5. Clusters of ensemble members from the temperature error data. One member from
each of these clusters is randomly chosen for subset KO8T (see Table 3).

Cluster Ensemble Members

Cluster 1 01, 13, 14, 15, 16

Cluster 2 02, 27, 28, 29

Cluster 3 10, 11, 12, 20, 21, 22, 30, 31, 32,40, 41, 42
Cluster 4 17,37, 47

Cluster 5 18, 19, 38, 39, 48, 49

Cluster 6 23, 33,43

Cluster 7 24, 25, 34, 35, 44, 45

Cluster 8 26, 36, 46
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FiG. 1. WRF domains used in this study. The outer domain has a 36-km horizontal resolution,
and the inner domain (outlined in red) has a 12-km horizontal resolution.



) Clusters for YWD at 48-h lead time
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FIG. 2. Clusters and cluster centroids for VWD at a lead time of 48 h for just two of the 3746
total observations. Each closed or open circle represents an ensemble member, and each
rotated or upright cross represents the position of the centroid in these two dimensions.
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ring is for 24-h forecast weights, the third ring for 36-h forecast weights, and the outer ring for
48-h forecast weights.
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FiG. 4. Same as Fig. 3, but for 10-m u-wind component.



Root-Mean Squared Error (RMSE)
10-m U-wind & V-wind
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FIG. 5. RMSE for 10-m u-wind and v-wind components at four forecast lead times over the
verification period, for the full ensemble and all four subsets. Filled bars are for the BMA-
weighted ensembles, and unfilled bars are for the equal-weighted ensembles.
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FIG. 6. Same as Fig. 5, but for 850-hPa u-wind and v-wind components.



Continuous Ranked Probability Score (CRPS)
10-m U-wind & V-wind
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FIG. 7. CRPS for 10-m u-wind and v-wind components at four forecast lead times over the
verification period, for the full ensemble and all four subsets. Filled bars are for the BMA-
weighted ensembles, and unfilled bars are for the equal-weighted ensembles.
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FiG. 8. Same as Fig. 7, but for 850-hPa u-wind and v-wind components.



Root-Mean Squared Error (RMSE)
2-m Temperature
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FiG.9. RMSE for 2-m temperature at four forecast lead times over the verification period, for
the full ensemble and all four subsets. Filled bars are for the BMA-weighted ensembles, and
unfilled bars are for the equal-weighted ensembles.
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FIG. 10. Same as Fig. 9, but for 850-hPa temperature.



Continuous Ranked Probability Score (CRPS)

2-m Temperature
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FiG. 11. CRPS for 2-m temperature at four forecast lead times over the verification period, for
the full ensemble and all four subsets. Filled bars are for the BMA-weighted ensembles, and
unfilled bars are for the equal-weighted ensembles.
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FIG. 12. Same as Fig. 11, but for 850-hPa temperature.



