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1.  INTRODUCTION 
 Computationally practical numerical integration of 
dynamical weather-forecast  and climate models 
requires truncation of the smaller space and time 
scales.  Typically the effects of these unresolved 
scales on the explicitly resolved prognostic variables 
are represented through deterministic 
parameterizations, which are relatively simple (and 
therefore computationally fast) specifications, 
formulated as functions of the resolved prognostic 
variables themselves.  However, a deterministic 
parameterization specifies at best a mean influence of 
the unresolved scales, conditional on the resolved 
prognostic variables, whereas nature provides an 
unpredictable realization more-or-less near the 
parameterized value (Palmer et al. 2005, Wilks 2005).  
It is therefore natural to extend parameterizations to 
include explicitly stochastic influences, i.e. random 
realizations from a probability distribution, possibly 
centered in some way at a deterministic 
parameterization.   
 A different approach to the parameterization 
problem involves nesting a spatially and dynamically 
explicit, yet dimensionally truncated, model for 
important small-scale processes within each large-
scale grid element, which is known as 
"superparameterization" (e.g., Grabowski 2001, 2004; 
Grabowski and Smolarkiewicz 1999; Khairoutdinov et 
al. 2005; Khairoutdinov and Randall 2001).  Randall 
et al. (2003) provide an introduction to and review of 
this approach, which has to date focused on two-
dimensional (e.g., longitude-height) cloud-resolving 
models that replace conventional parameterized 
tendencies with dynamically computed cloud 
influences on the larger scales.  Although they are 
attractive conceptually, superparameterizations are 
very expensive computationally, yielding full-model 
integration times that are two to three orders of 
magnitude slower than with conventional 
parameterizations (Randall et al. 2003), even though 
three-dimensional small-scale cloud fields are 
idealized to one-dimensional arrays of atmospheric 
columns that do not communicate across the large-
scale grid cells.   
 This paper considers the possibility of extracting 
a substantial part of the information provided by a 
superparameterization through the use of statistical 
models ("emulators") of the superparameterization, 
requiring substantially less computation.  This idea is 
pursued in the setting of the simple Lorenz '96 model 
(Lorenz 1996, 2006), the two-scale structure of which 
is particularly well suited to study of parameterization 
issues (Crommelin and Vanden-Eijnden 2008, 
Horenko 2010, Wilks 2005).   

2.  THE LORENZ '96 SYSTEM AND A 
SUPERPARAMETERIZATION FOR ITS SMALL-
SCALE DYNAMICS 
 The Lorenz '96 system (Lorenz 1996, 2006) is 
defined by the coupled equations  
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 As illustrated in Figure 1, the K large-scale 
("resolved") X variables whose tendencies are defined 
in Eq. (1a) are arranged in a cyclic domain that might 
be imagined as a latitude circle, so that XK+1 = X1 and 
X0 = XK.  Each of the X variables has associated with 
it J small-scale ("unresolved") Y variables, whose 
tendencies are defined in Eq. (1b).  The Y variables 
are cyclic also and their dynamics communicate 
across the boundaries of the large-scale variables, so 
that YJ+1, k = Y1, k+1, and Y0,k = YJ,k–1.  Here the 
parameters have been chosen as in Wilks (2005), 
with K = 8 large-scale variables, J = 32 small-scale 
variables associated with each large-scale variable, F 
= 20, h = 1, and b = c = 10.  Integrations of Eq. (1) are 
carried out using a fourth-order Runge-Kutta 
algorithm with time step Δt = 0.0001, the results of 
which are regarded as true realizations from nature.  
The effects of the unresolved Y variables on the 
larger scale are felt through the last term in Eq. (1a), 
which will require parameterization or representation 
through a superparameterization of Eq. (1b), in model 
approximations to Eq. (1a).  

An idealized superparameterization for the 
dynamics represented in Eq. (1b) has been 
constructed by assuming that basic dynamics of the Y 
variables are known, but that the parameter values 
are only approximately correct.  It is further assumed 
that the small-scale dynamics are entirely local (no 
communication between Y variables associated with 
different X variables), as is typical for cloud 
superparameterizations (Randall 2003).  Specifically, 



this idealized superparameterization replaces Eq. (1b) 
with  
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where the starred quantities are the incorrect 
parameter estimates h* = 0.4, c* = 18, b* = 7, and J* 
= 34, and locality is enforced by introducing the 
constant boundary values Y0, k = YJ*+1, k = YJ*+2, k = 
0.16.  These five parameter values were obtained by 
optimizing the superparameterization to yield 
minimum forecast mean-squared error (MSE) for lead 
times of one to two time units, using second-order 
Runge-Kutta integration with time step Δt = 0.005.   
 

 
Figure 1.  Schematic illustration of the Lorenz '96 system 
(Eq. 1), showing K = 8 resolved X variables, each with J = 32 
unresolved Y variables; both of which are cyclic.  Eq. (2) 
approximates the dynamics of Eq. (1b), using J* = 34 
unresolved variables for each X, which do not communicate 
with those of adjacent X's.  From Wilks (2005).   
 
 The differences between the starred 
superparameterization parameter values and their 
"true" counterparts in Eq. (1b) represent the structural 
errors inherent in abstracting more complex smaller-
scale behavior to a simpler superparameterization.  
Even though these values differ appreciably from their 
true counterparts, the coupling factor h*c*/b* = 1.029 
is nearly the same as the true ratio hc/b = 1.000.  The 
Y values evolved according to Eq. (2) enter the final 
term of Eq. (1a) by substituting h*c*/b* for hc/b, and 
summing over all J* = 34 superparameterized small-
scale variables.   
 
3.  EMULATION OF THE 
SUPERPARAMETERIZATION 
 A statistical emulator is a computationally fast 
statistical model summarizing the behavior, including 
the uncertainty, of a computationally demanding 
simulation model, which in the present context is the 
superparameterization of Eq. (2).  That is, emulators 

are meant to provide fast probabilistic predictions of 
the behavior of the full simulation model output, for a 
given input.   
 Both regression and Bayesian emulators will be 
constructed and compared in the following.  The 
present setting requires minimal complexity for the 
emulators, which will have only a single scalar input, 
X, and yield univariate probability distributions for the 
output, ΣY.  The notation ΣY indicates specification by 
an emulator of the sum of the J* = 34 small-scale 
superparameterization variables Yj,k in Eq.(2), which 
affects the large-scale Xk through the final term in Eq. 
(1).  Because the point of statistical emulation is to 
represent the behavior of a computationally expensive 
model, training data will be very limited in general for 
real settings, so only n = 20 (X, ΣY) pairs from the 
outputs of Eqs. (1a) and (2) are used to train each 
emulator.  These have been taken from a single 
integration of length 60 time units, with each training-
data pair separated from the next by three time units, 
so that successive pairs are nearly independent.   
 All the emulator formulations described below are 
implemented by integrating Eq. (1a) using second-
order Runge-Kutta integration with time step Δt = 
0.005.   
 
3.1  Regression emulators 
 The basic regression emulator is constructed 
simply as a polynomial regression representing the n 
= 20 training points,  
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ΣY = −0.04328 + 1.1648 X − 0.002656 X 3     .         (3) 
 
This regression exhibits an R2 of 91.4%, and has an 
estimated residual variance of s2

e = 1.5912.  It is 
similar to the polynomial parameterization regressions 
in Wilks (2005), although there full fourth-order 
polynomial regressions were justified by the n = 2000 
training-data samples taken from the "true" system 
(Eq. 1) rather than from output of the 
superparameterization (Eqs. 1a and 2).   
 The regression emulator implies a specification 
for ΣY that is a probability distribution, which is 
assumed here to be Gaussian, centered on Eq. (3) for 
a given input X.  In implementation this first 
regression emulator operates by drawing an 
independent realization from this distribution, with 
standard deviation se = 1.591, and substituting this 
into the last term of Eq. (1a) together with the 
estimated coupling factor h*c*/b* = 1.029 on each Δt = 
.005 time step.  This procedure will be called the 
independent regression emulator in the following.   
 In previous work on stochastic parameterizations, 
both with the Lorenz '96 system (Wilks 2005) and in 
other settings (Berner et al. 2009; Buizza et al. 1999; 
Lin and Neelin 2000, 2003), it has been found that 
serially independent random numbers are relatively 
ineffective at improving ensemble forecast 
performance, and that serially dependent (i.e. 
temporally coherent) random innovations yield better 
forecast ensembles.  Therefore an autoregressive 
regression emulator is also investigated here, which is 



built on realizations of serially correlated Gaussian 
time series generated using the simple first-order 
autoregression  

€ 

et = φ et−Δt + σe (1 − φ2 ) zt     .  (4) 
 
Here et and et–Δt are successive values of the random 
forcing for the emulator separated by a single time 
step, zt is an independent random draw from the 
standard Gaussian distribution, and for the 
autoregressive regression emulator se = 1.591 and φ 
= 0.995.  The autoregressive parameter φ has been 
chosen on the basis of the result in Wilks (2005) that 
it should be a large value (reflecting strong serial 
correlation) when se is set equal to the root-mean-
squared error (RMSE) of the regression.  It has not 
resulted from a tuning exercise, and so could almost 
certainly be improved upon.   
 
3.2  Bayesian Gaussian process emulators 
 The Bayesian emulators investigated here are 
based on the conventional formulation for a Bayesian 
Gaussian process emulator, using a linear mean 
function and weak priors for the parameters (Kennedy 
and O'Hagan 2001; O'Hagan 1992, 2006; see also 
the excellent treatment at 
http://www.mucm.ac.uk/toolkit).   
 Conditional on the single scalar input X, the result 
for the expected value of the output from the 
superparameterization ΣY is  
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E ΣY[ ] = b0 + b1X + M (X ,  X ' ,  δ )   ,         (5) 
 
and the corresponding (approximately Gaussian) 
variance is  
 

€ 

Var ΣY[ ] = ˆ σ 
2 V (X ,  X' ,  δ )   .          (6) 

 
Eq. (5) estimates the mean output from the 
superparameterization as a linear function of the 
resolved variable X, plus an adjustment M that 
depends on X and its distance from the n- (=20) 
member training data vector X' in terms of a 
decorrelation scale δ.  Eq. (6) quantifies uncertainty 
about the superparameterization output in terms of 
the variance parameter 

€ 

ˆ σ 
2 and a variance 

adjustment V that also depends on X, X' , and δ.  The 
mathematical details of parameter estimation (yielding 
b0 = 1.216, b1 = 0.7891, 

€ 

ˆ σ 
2= 1.8612, and δ = 

0.01156), and definition of the adjustment functions M 
and V, are presented in Wilks (2012).   
 Analogously to the independent regression 
emulator, the independent Bayesian emulator 
operates by calculating a conditional mean using Eq. 
(5) at each time step, adding to that an independent 
random draw from the Gaussian distribution with zero 
mean and the variance specified by Eq. (6), and 
substituting this independent realization for ΣY in the 
last term of Eq. (1a), together with the estimated 
coupling factor h*c*/b*.   

 Also considered in the following is an ad-hoc 
variant of the independent Bayesian emulator, which 
is based on the mean function in Eq. (5), but with the 
random excursion around the mean at each time step 
generated with the autoregression in Eq. (4).  Again 
somewhat arbitrarily and without tuning, φ = 0.995 
and se = √

€ 

ˆ σ 
2 = 1.861 are assumed.  This formulation 

will be referred to as the autoregressive Bayesian 
emulator, even though the autoregressive component 
is an add-on that is unrelated to the Bayesian 
structure that yields Eqs. (5) and (6).   
 
4.  CONSTRUCTION OF FORECAST ENSEMBLES 
 Forecast ensembles are initialized using the 
same algorithm, and based on the same set of 10,000 
initial points, as used in Wilks (2005).  These initial 
points are taken from a long integration of the "true" 
dynamics (Eq. 1), with each K-member set of X 
variables separated by 50 time units.  Initial ensemble 
distributions around these points are generated in a 
way that approximates the local attractor shape, as 
would a data assimilation procedure.   
 Superparameterization integrations of Eq. (2) 
require in addition an initialization for the J* = 34 
unresolved Y variables.  These initializations are 
achieved through a (35-dimensional) multivariate 
normal distribution for the joint distribution of the Y 
variables and their associated X variable, fit to results 
from a sample integration of Eqs. (1a) and (2).  Each 
superparameterization ensemble member is then 
initialized with a different realization from the joint 
distribution for each set of Y variables, conditional on 
the initialization for its X variable (e.g., Wilks 2011, 
Eq. 11.8).  In effect this procedure amounts to an 
initialization of random turbulence as in Khairoutdinov 
et al. (2005), without which the superparameterization 
integrations are slow to spin up fully, and yield inferior 
forecasts.   
 
5.  ENSEMBLE FORECASTING RESULTS 
 The performance of forecast ensembles based 
on the four statistical emulators (independent and 
autoregressive regression, and independent and 
autoregressive Bayesian) are compared in this 
section, in relation to two superparameterization-
based ensembles.  The first of these is the 
deterministic superparameterization described in 
Section 2, whose only random input is in the 
initialization of the small-scale Y variables.  In 
addition, a stochastic superparameterization is also 
investigated, which adds autoregressive noise (Eq. 4), 
with φ = 0.995 and standard deviation equal to half of 
√

€ 

ˆ σ 
2 from the Bayesian emulator, to the 

superparameterization output of ΣY at each time step.  
This amplitude for the random forcing is reduced 
relative to its counterparts in the autoregressive 
emulators because the internal dynamics of the 
superparameterization (Eq. 2) themselves induce 
some variance and autocorrelation.  Again, this 
parameter choice could almost certainly be improved 
upon through a tuning exercise.   



 Only results for ensemble size 20 will be 
presented, as they are representative of those for 
other choices, although as would be expected smaller 
ensembles yield generally poorer forecasts and larger 
ensembles yield generally better forecasts, for all six 
formulations.   
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Figure 2.  Average root-mean squared error for ensemble-
mean forecasts from regression emulators (circles), 
Bayesian emulators (triangles), and superparameterizations 
(stars).  Independent emulators and deterministic 
superparameterization are indicated by filled symbols 
connected by solid lines.  Autoregressive emulators and 
autoregressive stochastic superparameterization are 
indicated by open symbols connected by dashed lines.   
 
 Figure 2 shows RMSE for ensemble mean 
forecasts through lead times of 5 units, at which point 
forecast RMSE is comparable to the  
climatological standard deviation.  As would be 
expected, superparameterization forecast errors 
(stars) are smaller on average than errors from the 
emulators, and indeed are smaller than the errors 
from the fourth-order polynomial parameterization in 
Wilks (2005) through lead times of 2.5 units, and 
essentially the same thereafter, even though that 
polynomial parameterization was trained on a large 
sample of realizations of the "true" system.  However, 
remarkably the superparameterization results are only 
slightly better than those for the autoregressive 

regression emulator (that has been derived from a 
very small sample of superparameterization 
realizations), which itself shows RMSE comparable to 
or smaller than the earlier polynomial 
parameterization results for the first three lead times.  
Deterministic superparameterization errors are slightly 
smaller on average for lead times of 0.5 and 1 time 
unit, and stochastic superparameterization errors are 
slightly smaller for lead times of 2 and longer.  Among 
the emulators, best results are generally exhibited by 
the autoregressive regression emulator (open circles), 
although the independent (filled triangles) and 
autoregressive (open triangles) Bayesian emulators 
yield generally similar error magnitudes.  Errors for 
the independent regression emulator (filled circles) 
are generally comparable to the others until the later 
lead times, where they are clearly worse.   
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Figure 3.  Verification rank histograms at 1 time unit lead, for 
(a) deterministic superparameterization, (b) autoregressive 
superparameterization, (c), independent regression 
emulator, (d), autoregressive regression emulator, (e), 
independent Bayesian emulator, and (f), autoregressive 
Bayesian emulator.  Dashed lines show level of perfect rank 
uniformity.   
 
 Figure 3 shows verification rank histograms at 
lead times of 1 unit.  The rank histograms for the 
deterministic superparameterization (a), the 
independent regression emulator (c), and the 
independent Bayesian emulator (e) all indicate 
notable underdispersion of the ensembles.  Adding 
autoregressive components to the 
superparameterization (b), regression emulator (d) 
and Bayesian emulator (f) greatly improves the 
underdispersion, and in the case of the emulators 
nearly eliminates it.  Much of the lack of rank 
uniformity in panels (d) and (f) result from the positive 
bias (+0.05) of the autoregressive regression 
emulator (d) and the negative bias (–0.16) for the 



autoregressive Bayesian emulator (f), which are large 
enough to be detected by the rank histograms but too 
small to have an appreciable impact on RMSE.  
Comparable biases are also evident in the rank 
histograms for the respective independent emulators 
(c) and (e).   
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Figure 4.  Calibration functions from reliability diagrams for 
forecasts above the climatological 90th percentile (X ≥ 10.9), 
at lead times of (a) 1 unit and (b) 2 time units.  Plotting 
symbols are as defined in Figure 2.  Points are plotted only 
for subsamples of size 50 or larger.  Total sample size is 
10,000.   
 
 Figure 4 shows calibration functions from 
reliability diagrams for forecasts of X at or above its 
90th percentile, for (a) 1 and (b) 2 time unit leads.  As 
indicated also by the rank histograms in Figure 3, the 
deterministic superparameterization (solid stars) and 
especially the independent regression (solid circles) 
and Bayesian (solid triangles) emulators exhibit 
overconfidence, with overforecasting of the larger 
probabilities at both lead times, and underforecasting 
of the smaller probabilities in panel (a).  In contrast, 
the stochastic superparameterization and the 
autoregressive emulators (open symbols) all show 
excellent calibration at the 1-unit lead time, and more 
modest overconfidence at the 2-unit lead time.   
 Table 1 shows the reliability (REL) and resolution 
(RES) components of the Murphy (1973) 
decomposition of the Brier Score (BS) for the six 
ensemble formulations forecasting the probability of X 
above its 90th percentile, as functions of lead time.  
Table 1a shows that the autoregressive Bayesian 
emulator exhibits the best (smallest) REL (which 
corresponds to subsample-size-weighted probability 
calibration) at all except the first lead time, and is 
nearly best for lead time of 1 also.  In terms of 
reliability, the ensembles including autocorrelated 
noise are in each case better calibrated than their 
counterparts with no or independent random forcing, 
at all lead times.   
 The resolution results in Table 1b, corresponding 
in a sense to intrinsic information content without 
regard to correct labeling of the forecasts, is not 
surprisingly best for the superparameterization, of 
which the emulators are statistical abstractions.  
Among the emulators, the independent regression 
emulator shows better resolution at early leads, with 
the independent Bayesian emulator being better at 
later leads.  Here the deterministic 
superparameterization and independent emulators 

show better resolution than their autoregressive 
counterparts, but only slightly so in most cases.   
 Table 1c shows best (smallest) overall Brier 
scores for the superparameterizations, with the 
autoregressive regression best among the emulators 
at early leads, and the independent Bayesian 
emulator best at the later leads.  Here the Brier score 
for climatological forecasts is (0.9)(1–0.9) = 0.09, so 
skill scores corresponding to the results in Table 1c 
range from 46.4% for the deterministic 
superparameterization at lead 1 to slightly negative 
skills for all formulations at lead 5.   
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Figure 5.  Spread-skill correlations between ensemble 
standard deviation and mean-absolute error of the ensemble 
mean forecasts, for the six ensemble formulations as a 
function of lead time.   
 
 Finally, Figure 5 shows spread-skill correlations 
(between ensemble standard deviation and mean-
absolute error of the ensemble mean forecasts), for 
forecast leads through 5 time units.  These 
correlations are generally high for the early lead times 
but are still positive at the later lead times.  With only 
a few exceptions, the superparameterization 
correlations are higher than the regression emulator 
correlations, which in turn are higher than the 
Bayesian emulator correlations.  In most cases the 
ensembles forced with autoregressive noise exhibit 
higher spread-skill correlations than their deterministic 
or independent-noise counterparts.   
 
 
 



6.  SUMMARY AND CONCLUSIONS 
 An idealized "superparameterization", which is an 
abbreviated but dynamically explicit representation of 
small-scale influences on the conventionally resolved 
larger scales, has been constructed within the Lorenz 
'96 system.  This superparameterization has been 
used to investigate the feasibility of abstracting the 
greater portion of its information content through use 
of computationally faster statistical summaries, or 
emulators, based on an extremely limited training 
sample size.  Both a simple regression emulator and 
a mathematically more sophisticated Bayesian 
emulator were constructed, and a large number of 
ensemble forecasts based on these with both 
temporally independent and autocorrelated stochastic 
components were integrated.  Results were compared 
to ensembles based on the superparameterization, 
formulated both with and without stochastic forcing.   
 Ensembles based on the superparameterizations 
yielded better ensemble-mean RMSE; but considering 
the very small amount of training data the best of the 
statistical emulators, the regression emulator with 
autoregressive forcing, performed remarkably well.  
Consistent with previous studies, the nonstochastic 
superparameterization and temporally independent 
emulators yielded strongly underdispersed 
ensembles, whereas autoregressive random forcing 
ameliorated the underdispersion to a very substantial 
degree in all three cases.   
 The Bayesian emulator with autocorrelated 
random forcing yielded the best-calibrated probability 
forecasts, as measured by the reliability term of the 
Murphy (1973) decomposition of the Brier score, and 
for lead times beyond 1 unit yielded better reliability 
than either of the superparameterization ensembles.  
The superparameterization ensembles exhibited best 
resolution and overall Brier score, with regression 
emulators better than Bayesian emulators at the 
earlier lead times, and the reverse at later lead times, 
with respect to both of these attributes.   
 The superparameterization and its emulators 
used here were constructed in a deliberately 
imperfect way in order to mimic inaccuracies in the 
structure of real atmospheric models.  Future 
improvements might include stochastic models more 
sophisticated than Eq. (4) for the time dependence of 
the random innovations to the superparameterization 
and its regression emulator, the details of which could 
be informed by the statistical characteristics of the 
resolved model errors.  Similarly explicit time 
dependence could also be built into the structure of 
the Bayesian emulator, of course at the cost of 
greater complexity.   
 Overall the present results are encouraging with 
respect to the prospects for capturing much of the 
information content of a computationally expensive 
superparameterization using well-designed and 
computationally fast statistical emulators.  Even 
though the present training data were extremely 
limited in number, the autoregressive regression 
emulator yielded results comparable to those for a 
similar formulation trained on a very large sample 

from the "true" system (Wilks 2005).  Of course the 
Lorenz '96 setting is a highly idealized abstraction of 
the real atmosphere, but the results here suggest that 
it should be worthwhile to extend the present 
experimental protocol to forecast ensembles within 
more realistic dynamical models.  In that case the 
implementation will be substantially more 
complicated, probably requiring emulators with 
multiple inputs and outputs.   
 Interestingly, forecast performance for 
superparameterization ensembles was improved by 
addition of autocorrelated random forcing to the 
superparameterization output.  In realistic models of 
the atmosphere this procedure would correspond to 
accounting for deficiencies in (conventional) 
parameterizations of such process as cloud 
microphysics and radiative transfer whose scales are 
too small to be resolved by the 
superparameterization.  Even in settings where the 
computational resources may be adequate for use of 
superparameterizations rather than their more 
economical statistical emulators, the results here 
suggest that better forecasts may be achievable by 
also including explicitly stochastic elements.   
 
7.  REFERENCES 
Berner J, Shutts GJ, Leutbecher M, Palmer TN. 2009.  
 A spectral stochastic kinetic energy backscatter 
 scheme and its impact on flow-dependent 
 predictability in the ECMWF ensemble prediction 
 system, J. Atmos. Sci., 66, 603–626. 
Buizza R, Miller M, Palmer TN.  1999.  Stochastic 
 representation of model uncertainties in the 
 ECMWF Ensemble Prediction System.  Q. J. R. 
 Meteorol. Soc., 125, 2887-2908.   
Crommelin D, Vanden-Eijnden E.  2008.  Subgrid-
 scale parameterization with conditional Markov 
 chains.  J. Atmos. Sci., 65, 2661-2675. 
Grabowski WW.  2001.  Coupling cloud processes 
 with the large-scale dynamics using the cloud-
 resolving convection parameterization (CRCP).  
 J. Atmos. Sci., 58, 978-997.   
Grabowski WW. 2004.  An improved framework for 
 superparameterization.  J. Atmos. Sci., 61, 1940-
 1952.   
Grabowski WW, Smolarkiewicz PK. 1999.  CRCP: a 
 cloud resolving convection parameterization for 
 modeling the tropical convective atmosphere.  
 Physica D, 133, 171-178.  
Horenko I. 2010.  On the identification of 
 nonstationary factor models and their application 
 to atmospheric data analysis.  J. Atmos. Sci., 67, 
 1559-1574.   
Kennedy MC, O'Hagan A. 2001.  Bayesian calibration 
 of computer models.  J. Roy. Stat. Soc. B, 63, 
 425-464.   
Khairoutdinov MF, Randall DA.  2001.  A cloud 
 resolving model as a cloud parameterization in 
 the NCAR Community Climate System Model: 
 preliminary results.  Geophys. Res. Lett., 28, 
 3716-3620.  



Khairoutdinov M, Randall D, DeMott C.  2005.  
 Simulations of the atmospheric general 
 circulation using a cloud-resolving model as a 
 superparameterization of physical processes.  J. 
 Atmos Sci., 62, 2136-2154.   
Lin J, Neelin JD. 2000.  Influence of a stochastic 
 moist convective parameterization on tropical 
 climate variability. Geophys. Res. Lett., 27, 3691-
 3694. 
Lin J, Neelin JD. 2003. Toward stochastic deep 
 convective parameterization in general circulation 
 models. Geophys. Res. Lett., 30, 1162-1165. 
Lorenz EN.  1996.  'Predictability — A problem partly 
 solved'.  Pp. 1–18 in Proceedings of seminar on 
 predictability: Volume 1.  ECMWF, Reading, UK. 
Lorenz EN.  2006.  Predictability — A problem partly 
 solved.  In:  Palmer T and Hagedorn R, Eds., 
 Predictability of Weather and Climate.  
 Cambridge University Press, 40-58. 
Murphy AH. 1973.  A new vector partition of the 
 probability score.  J. Appl. Meteorol., 12, 595-
 600.   

O'Hagan A. 1978.  Curve fitting and optimal  design 
 for prediction.  J. R. Stat. Soc. B, 40, 1-42.   
O'Hagan A. 1992.  'Some Bayesian numerical 
 analysis'.  In:  Bernardo JM, Berger JO, Dawid 
 AP and Smith AFM (Eds.), Bayesian Statistics 4.  
 Oxford University Press, 345-363.   
O'Hagan A. 2006.  Bayesian analysis of computer 
 code outputs: a tutorial.  Rel. Eng. System 
 Safety, 91, 1290-1300.   
Randall D, Khairoutdinov M, Arakawa A, Grabowski 
 W.  2003.  Breaking the cloud parameterization 
 deadlock.  Bull. Amer. Meteor. Soc., 84, 1547-
 1564.   
Wilks DS. 2005.  Effects of stochastic 
 parametrizations in the Lorenz '96 system.  Q. J. 
 R. Meteorol. Soc., 131, 389-407. 
Wilks DS. 2011.  Statistical Methods in the 
 Atmospheric Sciences, 3rd Edition.  Academic 
 Press, 676 pp.   
Wilks, DS. 2012. "Superparameterization" and 
 statistical emulation in the Lorenz '96 system.  Q. 
 J. R. Meteorol. Soc., in press.   
 

 
 
Table 1.  Reliability (a) and Resolution (b) components of the Murphy (1973) decomposition of the Brier Score (c), for 
probability forecasts of X larger than its 90th percentile (> 10.9).  Best results at each lead time are indicated in 
boldface.   
 
 Superparameterizations Regression Emulators Bayesian Emulators 
 Lead Determ. Autoreg. Indep. Autoreg. Indep. Autoreg. 
 
(a) REL 
 1 0.0008 0.0006 0.0027 0.0007 0.0019 0.0008 
 2 0.0029 0.0010 0.0050 0.0010 0.0026 0.0002 
 3 0.0031 0.0015 0.0049 0.0017 0.0019 0.0006 
 4 0.0034 0.0021 0.0052 0.0025 0.0024 0.0012 
 5 0.0032 0.0024 0.0056 0.0030 0.0025 0.0019 
(b) RES 
 1 0.0429 0.0410 0.0364 0.0357 0.0333 0.0308 
 2 0.0128 0.0123 0.0103 0.0102 0.0088 0.0075 
 3 0.0063 0.0061 0.0046 0.0045 0.0048 0.0031 
 4 0.0034 0.0034 0.0020 0.0019 0.0023 0.0011 
 5 0.0023 0.0021 0.0008 0.0008 0.0012 0.0004 
(c) BS 
 1 0.0482 0.0498 0.0566 0.0552 0.0588 0.0603 
 2 0.0800 0.0787 0.0846 0.0808 0.0838 0.0827 
 3 0.0878 0.0864 0.0913 0.0882 0.0882 0.0885 
 4 0.0900 0.0888 0.0933 0.0907 0.0902 0.0901 
 5 0.0920 0.0914 0.0959 0.0932 0.0924 0.0926 


