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Abstract 
 

Advances over the past several years in high-resolution atmospheric weather modeling include the 
introduction of the enhanced RUC13 (13km), which assimilates 3-d level III radar reflectivity, the 
availability of NASA’s Short-term Prediction Research and Transition Center (SPoRT) high-
resolution Moderate Resolution Imaging Spectroradiometer (MODIS) Advanced Microwave 
Scanning Radiometer (AMSR-E) Sea Surface Temperature (SST) composites (providing superior 
details across surrounding ocean areas), and  NASA's high-resolution Land Information System 
(LIS) surface datasets. In order to study the impact of these improvements and the performance of 
various local model configurations at WFO Miami, an experiment was conducted during the 2011 
convective season using the Weather and Research Forecasting (WRF) Environmental Modeling 
System (WRFEMS) released and maintained by the National Weather Service (NWS) Science and 
Operations Officer Science and Training Resource Coordinator (SOO STRC). The experiment 
consisted of verifying and comparing against each other the performance of different model 
configurations using Equitable Threat Scores (ETS), Areal Bias (AB) Scores, and Percent Correct 
(PC) scores for different precipitation thresholds. The focus of the analysis was on short term 
convection. The model configurations consisted of a variety of local high-resolution WRF 
configurations and the RUC13. Emphasis was also given to the effect on the local WRF model 
configurations of NASA’s SPoRT surface datasets as well as to the effect of using explicit 
convection versus convective parameterization. The skill scores were computed using Stage IV 
gridded precipitation data as ground truth. This paper presents the results of this experiment.   
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1. INTRODUCTION 
 

During South Florida convective season (mid-May 
to mid-October) mesoscale weather features have a 
significant impact on day-to-day weather forecasts as 
they represent the primary forcing. Some of these 
features are: sea, land, and lake breezes, thermal 
troughs, and outflow boundaries. The warm waters of 
the Gulf Stream also play an important role on the 
thermodynamic properties of the local air mass. Also 
day-to-day fluctuations in the conditions of the land 
surface (temperature and moisture) associated with the 
spatial variability of day-to-day convection impact the 
observed thunderstorm activity. Unlike in the past, 
many of these features are represented in high-
resolution models available to local offices from 
National Centers as well as from local models which 
are necessary to support local forecasts.  

In fact, during the past several years significant 
improvements have been made with high-resolution 
diagnostic as well as prognostic tools. One of those 
tools is the 13 km Rapid Update Cycle (RUC13) model 
(Benjamin et al., 2007, 2010). The RUC13 incorporates 
assimilation of multiple high-resolution data sets 

including nationwide level III radar data. Another one of 
those tools is the Weather and Research Forecasting 
(WRF) Environmental Modeling System (WRFEMS; 
SOO/STRC, 2010) which is a packaged version of the 
WRF model distributed by the National Center for 
Atmospheric Research (NCAR). The WRFEMS 
enables the configuration of high-resolution model 
configurations for operational or research purposes at 
the local level while requiring little modeling expertise. 
Furthermore, collaboration between local Weather 
Forecast Offices (WFOs) and research groups such as 
NASA’s SPoRT has resulted in accessibility by some 
WFOs to high-resolution land and surface datasets 
such as NASA’s LIS (Case et al., 2009) and high-
resolution SST composites from multiple instruments 
such as the Advanced Microwave Sensing Radiometer 
(AMSR) and the Moderate Resolution Imaging 
Spectroradiometer (MODIS) (Jedlovec et al., 2009, 
2010; Schiferl et al., 2010). These new tools and data 
sets have opened the door for new experiments at the 
WFO level with the intent to study any potential 
improvement in local scale convective guidance driven 
by local high-resolution models. 

 
This paper presents results of a validation study 

conducted during the 2011 convective season at the 
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WFO in Miami to validate their local WRF high-
resolution model configurations with emphasis on the 
effect of the tools described above on the model skill, 
comparisons against the RUC13, and effects of 
changing the convective parameterization scheme in 
the model. This work is the result of a summer 
internship project at WFO Miami sponsored by the 
University of Puerto in Mayagüez.  

 

2. OBJECTIVES 
 

The objectives of this paper are: 1) to verify the 
skill in forecasting summertime convection of WFO 
Miami WRF Advanced Research core model 
configurations as well as the RUC13, 2) to compare the 
skills of the various model configurations tested, 3) to 
assess the impact of using NASA’s SPoRT SST/LIS 
high-resolution surface data sets, and 4) to verify the 
skill of the models relative to resolution and the 
convective precipitation scheme used (explicit versus 
convective parameterization). 

3. DATA 
 

In order to successfully fulfill the objectives stated 
in section 2, there are four sources of data needed: 1) 
archives of the models to be validated, 2) the source of 
initial and boundary conditions used to run the model in 
1, 3) the source of surface datasets used for the model 
run, and 4) the source of observed precipitation data 
used against which the model skill scores will be 
computed. These data sources are briefly described in 
this section. 

 

3.1 Model - WRF ARW 

WFO Miami uses the Weather Research and 
Forecast Environmental Modeling System (WRF EMS). 
As stated on the WRF-EMS website “this is a complete, 
full-physics, state-of-the-science numerical weather 
prediction (NWP) package that incorporates dynamical 
cores from both the National Center for Atmospheric 
Research (NCAR) Advanced Research WRF (ARW) 
and the National Center for Environmental Predictions' 
(NCEP) non-hydrostatic mesoscale model (NMM) 
releases into a single end-to-end forecasting system. 
All the capability of the NCEP and NCAR WRF 
packages are retained within the WRF EMS; however, 
the installation, configuration, and execution of the 
cores have been greatly simplified to encourage its use 
throughout the operational, private, and University 
forecasting and research communities”. 
 

The WRF is run in two different configurations at 
WFO Miami: a 9/3 km WRF-ARW nest (also referred to 
in the text as arw09 and arw03) and a 6/2 km WRF-
NMM nest. Table 1 shows the highlights of each of the 
model configurations. Figure 1 shows the model 
domains. For purposes of this experiment, and given 
the limited computational resources at the WFO level, 
only those configurations in red in Table 1 were 
evaluated in this study. For the same reason the ARW 
configurations ran out only to 18 hours 6 times a day.   

Model: WRF- ARW 

Forecast Length: 18 hours/1 hour output interval 

Resolution: 9/3 km nest (arw09/arw03) 

Cycles: 00Z, 04Z, 08Z, 12Z, 16Z, 20Z 

Boundary Conditions: 13 km RUC for 9km and outer 
nest for the 3km domain. 

Convective Parameterization: 3km explicit; 9km: two 
configurations tested, explicit and Kain-Fritsch (Kain 
and Fritsch, 1993). 

Model: WRF-NMM 

Forecast Length: 36 hours/1 hour output interval 

Resolution: 6/2 km nest 

Cycles: 00Z, 03Z, 06Z, 09Z, 12Z, 15Z, 18Z, 21Z 

Boundary Conditions: Global Forecast System for 
6km nest and 6km nest for the 2km domain. 

Convective Parameterization: None. 

Common to both model configurations 

Initial Conditions: 13 km RUC outer nests 

SSTs: NASA’s SPoRT high res MODIS/AMSR-E 
composite 

Land Surface Temperature and Moisture: NASA’s 
SPoRT Land Information System 

 

Table 1. WRF model configurations run locally at WFO 
Miami. Due to limited computational resources, only 
those configurations in red were looked at in this 
study. 

 

3.2 13 km RUC (RUC13) 
 

The RUC13 (Benjamin et al., 2007, 2010) is a 
numerical forecast model that uses an isentropic-sigma 
hybrid vertical coordinate system and assimilates data 
on a rapid update cycle run hourly out to 18 hours. 
Among others, some of its most notable enhancements 
introduced in recent years include assimilation of hourly 
nationwide level III radar reflectivity data which have 
resulted in marked improvements (Benjamin et al., 
2007). For purposes of this project, the RUC13 was 
used for initial and boundary conditions of the WRF-
ARW 9 km nest in part because we sought to compare 
the ARW configurations against those of the RUC. 

 

3.3 NASA’s Land Information System and High-

resolution AMSR-E/MODIS Sea Surface 

Temperatures (SST) 

 
NASA’s SPoRT high-resolution MODIS/AMSR-E 

SST is a 1 km SST product that is created real time by 
compositing SST retrievals from MODIS polar orbiting 
(Aqua and Terra) satellites successive overpasses. 
However, when done using MODIS data alone, the 
accuracy of the data is affected by extended periods of 
cloud cover over any given particular area (Jedlovic et 
al. 2009). This is where the incorporation of the 
Advanced Microwave Sensing Radiometer (AMSR-E) 
retrievals helps as the microwave retrievals are not 
affected by clouds. This dataset is used to specify the 
SST going into the WRF model at Miami.  
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NASA’s Land Information System (LIS; Kumar et 
al., 2006, 2007) is a high performance land surface 
modeling and data assimilation system that integrates 
satellite-derived datasets, ground-based observations 
and model reanalyzes to force a variety of land surface 
models (LSMs). By using scalable, high-performance 
computing and data management technologies, LIS 
can run LSMs offline globally with a grid spacing as fine 
as 1 km to characterize land surface states and fluxes. 
Case et al. (2008) presented improvements to 
simulated sea breezes and surface verification 
statistics over Florida by initializing the WRF model 
with land surface variables from an offline LIS spin-up 
run, conducted on the same WRF domain and 
resolution. NASA’s LIS, provided by NASA’s SPoRT 
Center is used as the land surface data used to 
initialize the WRF model at WFO Miami. 
 

As stated earlier, one of the objectives of this study 
was to quantify the effect of using NASA’s SPoRT SST 
and  LIS data in the model simulation by looking at skill 
scores with model runs that used this data versus the 
same set without the dataset. 

 

3.4 Stage IV Rainfall Data 

 
The Stage IV precipitation data (NCEP, 2011) is a 

4 km national mosaic from the regional hourly and 6 
hourly multi-sensor (radar and gauges) precipitation 
analyses that are produced by the River Forecast 
Centers across the continental US (CONUS) (Lin and 
Mitchell, 2005). The data is freely available for 
download from NCEP’s website. 
 

4.0 METHODOLOGY 

 
The model evaluation was based on analysis of 

grid scale calculations of a variety of skill scores 
including equitable threat score (ETS), areal bias (AB), 
and percent correct (PC) scores. Before ETS is 
defined, the concept of a threat score must be defined 
(TS) (Wilks, 1995). Conceptually, threat scores can be 
explained like this: given an Area Forecast (Af) of 
precipitation, an Area Observed (Ao) of precipitation, 
and the area over which both of these intersect, 
referred to as Area Correct (Ac), the threat score is 
defined as shown in Figure 2.  

 
 Therefore, the smaller the threat scores the less 

skill in the forecast.  Notice also that if the areas of 
observed and forecast precipitation overlap by as much 
as 50%, the resulting threat score would be 0.33 
assuming the Af and Ao are equal in size. A perfect 
forecast for which Af and Ao overlap entirely would 
result in TS=1. Conversely, if the Ac=0 (no overlap 
between Af and Ao), TS=0. It is important to mention 
that TS does not include null cases or cases for which 
rainfall is not forecast and not observed.  
 

 
 

 
 

Figure 1. WFO Miami WRF-ARW nested domains (9/3 
km or arw09/arw03) top and WRF-NMM (6/2 km) 
bottom. These are one way nests with inner nests 
getting their initial and boundary conditions from 
outer nests. 

 

http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/


 
Figure 2. Schematic illustration of the definition of 

Threat Score. 
 
In in terms of how one computes these on a grid, an 
equivalent definition is like this. Consider the following 
contingency table: 
 

 
 

Table 2. Contingency table used to illustrate how a 
variety of skill scores can be computed from 
Forecast/Observed Yes/No cases. 

 
Given Table 2, threat score is then defined like this: 

 
TS = d/(b + c + d) 

 
Where d represents hits, c represents false alarms, 
and b represents misses. In this context, the traditional 
probability of detection (POD) and false alarm ratio 
(FAR) are computed as follows: 
 

POD = d/(b+d)      ;      FAR = c/(c+d) 
 

This definition of TS is equivalent to the definition 
in Fig. 2. Notice TS accounts for both POD and FAR 
and is also traditionally known as the critical success 
index. So if one has a list of model forecasts and 
observed data points matching in time, b, c, and d can 
be counted on a grid point by grid point basis and any 
of these scores computed for a given area from where 
data is extracted. The counts can be computed relative 

to different rainfall thresholds. In this case we used 

0.254 mm (0.01 inches) and 6.35 mm (0.25 inches) 

of rain for thresholds. This means the rainfall event is 
considered to have been forecast or observed for any 
given point if it exceeded that threshold. 
  

One limitation of the TS score is that if the model 
exhibits large areal biases it runs the risk of scoring yes 
forecast and yes observed events by chance and not 
necessarily skill. So a more commonly used metric in 
the modeling community for model skill is the equitable 
threat score (ETS; Rogers et al., 1996) defined as 
follows: 
 

ETS = (Hits –E)/(Hits + Misses + False Alarms – E) 
 
Where  
 
E = (#forecastpoints x #observedpoints/#Total points) 

 
 Or in terms of how it is computed using Table 2: 
 

ETS = (d-dr)/(b + c + d – dr) 
 
where 
 

dr = (c + d)*(b + d)/(a +b + c + d) 
 
where E or dr  is a measure of hits expected by 
chance. A negative ETS signifies no skill with a perfect 
score being 1.0. Figure 3 illustrates and example of 
what these scores look like for a bad and good 
forecast. 
 

  

  
 

Figure 3. Illustration of how the TS/ETS scores vary 
between a bad forecast (top row) and a good 
forecast (bottom row). On the left column is a model 
precipitation forecast for a given time period and on 
the right is the observed rainfall for the same period. 
For this example, the bad forecast (top) exhibited a 
TS = 0.01 and ETS = -0.011. The good forecast 
(bottom) exhibited a TS = 0.583 and ETS = 0.334.  

   Observed 
No            Yes 

                
                   No  
 
Forecast                              
                   Yes 

a                 b 

c                 d 
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Figure 4a. Composite 00 UTC model cycle PC scores 
for the 00 to 06, 06 to 12, and 12 to 18 forecast 
periods for the 0.254 mm/0.01 in (top) and 6.35 
mm/0.25 in (bottom) thresholds for the period of 
study stretching from May 15, 2011 to August 25, 
2011. In blue is the ruc13, red is the arw09 (outer 
nest at the top of Fig.1), green is arw09 without 
NASA’s SPoRT SST/LIS dataset, purple is arw03 
(inner nest at the top of Fig.1), light blue is arw03 
without NASA’s SPoRT SST/LIS, and orange is 
arw09 using NASA’s SPoRT dataset and Kain-
Fritsch (KF) for convective parameterization, and 
cyan is arw03 which still uses explicit precipitation 
but is fed by the arw09 outer nest with KF. 

 
Other scores that were computed given Table 2 

are the percent correct (PC) and areal bias (AB) 
defined as: 
 

PC = (a+d)/(a+b+c+d)      and      AB = (c+d)/(b+d) 
 

 
0.01 in threshold 

 
0.25 in threshold 

 

Figure 4b. Same as 4a but for the 12 UTC model 
cycle.  

 
PC is a measure of the percent of correct yes and no 
forecasts and AB is a measure of the areal or spatial 
bias in the model with respect to a given threshold. 
 

In order to compute the skill scores, the model 
and/or stage IV rainfall data were interpolated on to the 
lower resolution grid between the two. Then the scores 
were computed as a function of forecast hour using 3 
and 6 hours rain accumulations and composited for the 
study period stretching from May 15 to August 25 2011 
and for the 00 UTC and 12 UTC model cycles. The total 
of model cycles included in the analysis through the 
period was 80 for 00 UTC, and 81 for 12 UTC. The 
thresholds for which the scores were computed were 
.254 mm/ .01 inches and 6.35 mm/0.25 inches of rain. 
The area over which scores were computed is the one 
shown in Fig. 3 which encompasses mainland South 
Florida despite the  



 
0.01 in threshold 

 
0.25 in threshold 

 

Figure 5a. As Fig. 4a but for AB scores. 

 
model domain in Fig. 1 being much larger. This was 
due to limited computational resources. 
 

In order to meet the objectives stated earlier, the 
scores were computed for the RUC13, arw09, and 
arw03 domains (with and without NASA’s SPoRT 
SST/LIS dataset), and for the arw09 using both explicit 
convection as well as the KF convective 
parameterization scheme. This enabled us to compare 
the RUC13 against the different WRF-ARW local 
configurations, evaluate the impact of the NASA 
surface datasets, model resolution, the effect of the 
convective scheme used, and compare the 
performance with respect to different rain thresholds. 
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Figure 5b. Same as 5a but for the 12 UTC model 
cycle.  

 

5. RESULTS 
 

Figure 4 shows the study period composite PC 
scores for the 0-6, 6-12, and 12-18 forecast periods for 
the different model configurations for the 00 UTC (4a) 
and 12 UTC (4b) model cycles. The top plots in Fig. 4 
are the scores for the 0.01 in threshold and the bottom 
ones are for the 0.25 in threshold. This figure shows 
improvements of as much as 15% of the arw model 
configurations over the RUC13 in distinguishing areas 
where the event occurred or not. The improvement is 
greatest for the 0.01 in threshold. Also notable are the 
higher scores of the arw09 outer nest configuration that 
used explicit precipitation versus the runs using the KF 
convective parameterization scheme which exhibited 
substantially lower scores, particularly in the lower 
threshold. The differences in skill related to resolution 
appear to be not that discernible. 
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0.25 in threshold 

 

Figure 6a. As Fig. 4a but for ETS scores. 

 
Figure 5 is as Fig. 4 but for the AB scores. It is 

evident that the RUC13 and arw09 configuration with 
the KF convective parameterization scheme suffer from 
a pronounced areal bias overestimating areas of rain 
by as much as a factor of 2 with individual forecast time 
periods as high as nearly 4 to 5.5. On the other hand,  
the arw configurations with explicit convection have a 
bias closer to 1 except for the latter forecast projections 
which reflect a dry bias.  
 

Figure 6 illustrates the results for the ETS scores. 
These are mixed. None of the model configurations 
clearly outperforms the other although the high areal 
biases associated with the RUC13 and are09 KF 
configurations likely contribute to inflate these scores. 
 

Collectively, all three scores clearly show the 
systematic effect of using NASA’s SPoRT SST/LIS  
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0.25 in threshold 

 

Figure 6b. Same as 6a but for the 12 UTC model 
cycle.  

 
datasets at the surface is nearly neutral over the 
convective season. 

 
Figures 7, 8, and 9 show the PC, AB, and ETS 

scores, respectively, averaged for all forecast periods 
combined through the study period for the 00 UTC and 
12 UTC cycles and the 0.01 in (top) and 0.25 in 
(bottom) precipitation thresholds. From the perspective 
of the PC score, and in the mean, the arw 
configurations outperform the RUC13 and arw09 with 
KF configurations. Also worth noting is that there 
appears to be no systematic difference in skill between 
the different arw model resolutions. The largest 
difference among the different model configurations 
stem from the change in the convective scheme with 
explicit precipitation outperforming the KF convective 
parameterization scheme with arw09. 
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Figure 7. Composite PC scores for all forecast periods 
combined for the 00 UTC and 12 UTC model cycles 
for the 0.01 in (top) and 0.25 in (bottom) thresholds. 

 
From the perspective of the AB score, overall, the 

RUC13 and arw09 with KF configurations exhibit large 
systematic areal biases while the other arw 
configurations are much closer to 1. The ETS mean 
scores in Fig. 9 show no clear model configuration 
outperforming the other with the 12 UTC cycle 
exhibiting higher scores overall. This is likely related to 
the fact that the 12 UTC cycle, given the forecasts went 
out only 18 hours, is the cycle that best captured the 
peak of the diurnal convective cycle.  

 
Overall the effect of using the NASA’s SPoRT 

SST/LIS surface datasets is nearly neutral. 
 

Although not shown, a similar sequence of results 
was analyzed based on 3 hours forecast periods  
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0.25 in threshold 

 

Figure 8. As Fig. 7 but for AB scores. 

 
instead of 6. The results were pretty similar to those 
summarized so far here based on the 6 hours forecast 
periods results. The one notable difference was that the 
RUC13and arw09 with KF configurations exhibited 
areal biases as high as a factor of 7 for individual 3 
hours forecast period. Also, around the 3-hour forecast 
period ending at 06 UTC, all model configurations 
showed a very notable wet bias of 6 to 7 particularly on 
the 3 hour period ending at 06 UTC. This may indicate 
a problem with the high res models overestimating 
southeast Florida showers which typically have an 
overnight diurnal peak during the summer time in the 
predominant low level easterly flow. 
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Figure 9. As Fig. 7 but for ETS scores. 
 

6.0 SUMMARY AND CONCLUSIONS 
 

This paper summarizes the results of a verification 
study of RUC13 and local high-resolution models 
conducted at WFO Miami during the 2011 
convective,season. The period of study stretched from 
May 15, 2011 to August 25, 2011. Various skill scores 
were computed to validate and compare different 
model configurations including the RUC13, and the 
WRF-ARW configurations shown in Fig. 1 and Table 1. 
The study also included a comparison of the model 
skills with and without NASA’s SPoRT surface data 
sets as well as a comparison of using explicit 
precipitation versus the KF convective parameterization 
scheme with the arw09 model configuration. The skill 
scores used included percent correct (PC), areal bias 
(AB), and Equitable Threat Score (ETS) computed for 
the 0.01 in and 0.25 in precipitation thresholds. 
 

Results indicate that generally the arw model 
configurations systematically outperformed the RUC13 
in terms of PC scores with the exception of the arw09 
with KF. The RUC13 and arw09 KF configurations 
exhibited a large systematic areal bias compared to the 
arw configurations. In terms of the ETS scores, the 
results were mixed with no clear model outperforming 
the other. Therefore, when looking at these results 
holistically, the arw configurations outperformed slightly 
the others.  

 
The skill scores did not show systematic 

improvements between the outer and the inner nests of 
the ARW configurations. Whether higher resolution 
resulted in any systematic improvement or not cannot 
be answered based on these findings. This is perhaps 
due to the fact that the inner nest is driven by the 
boundary conditions flowing into it from the outer nest. 
Perhaps a more proper comparison would be to run 
different configurations with different resolutions 
independent of each other but still using the same 
initial and boundary conditions.  

 
The greatest detriment in skill scores resulted from 

switching the convective scheme from explicit in the 
arw09 configuration to the KF convective 
parameterization scheme. This highlights that when 
modeling at these scales resolution is not the only 
important consideration but also physical configuration 
parameters.  

 
Finally, NASA’s SPoRT SST/LIS datasets do not 

appear to have any systematic effect in terms of skill 
(negative or positive). The authors believe this might be 
related to the fact that the results in this paper were 
composited for the entire season. This needs further 
investigation looking at individual cases where large 
scale forcing is weak. In that context a positive 
contribution signal might be more discernible from the 
use of these datasets. That would also be consistent 
with the findings of Case et al. (2009). 

 
All high resolution model configurations considered 

in this study exhibited skill in forecasting convective 
precipitation. But limited as this study was, it highlights 
that there are still considerable differences among 
different high-resolution model configurations. 
Therefore, when one uses high-resolution models at 
the local level it is not because NCEP does not provide 
guidance at these resolutions (a valid arguments years 
ago but not any longer); but, more importantly, it is 
because their value reside in the combined use of 
different configurations – an ensemble approach. This 
is why we believe there is value for the continued use 
of local models in the field. Additionally it gives offices a 
tool for conducting case studies as well as to 
experiment with different configurations. 
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