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1. INTRODUCTION 

Despite increasingly frequent calls for better 
communication of weather forecast uncertainty 
(e.g., Morss et al. 2008), exposure of students to 
probabilistic forecasting may still be the exception 
rather than the rule. Aside from a few probabilistic 
contests described later, many students engage in 
contests, in-class or otherwise, that are 
deterministic. For example, the WxChallenge, an 
intercollegiate weather forecasting contest with 
over 1000 student participants, is wholly 
deterministic in format (Illston et al. 2009). 
Additionally, students examining weather forecasts 
from the NWS obtain primarily deterministic 
information courtesy of the National Digital 
Forecast Database (Glahn and Ruth 2003). 

In an effort to introduce students to issues 
related to the communication of weather 
uncertainty, the New Brunswick Forecasting Game 
(NBFG) at Rutgers University has been revised to 
become fully probabilistic. In addition to providing 
students with practice making probabilistic 
forecasts, the scoring system itself introduces 
students to concepts of forecast quality like 
reliability and sharpness. Furthermore, students 
can explore the dataset formed over the course of 
the year to create visual measures of forecast 
performance such as reliability diagrams and 
relative operating characteristic (ROC) curves. 

This abstract outlines the new NBFG and 
shows how the database of past forecasts can be 
mined to introduce concepts like the ROC curve to 
students. 

2. THE NEW BRUNSWICK FORECASTING 
GAME 

2.1 OVERVIEW 

The current NBFG is designed as follows. 
During the fall semester, students make forecasts 
once a week (i.e., one “forecast window”) for four 

periods for two locations. The four periods run 
from either 00 to 12 UTC or 12 to 00 UTC and can 
be thought of as tonight, tomorrow, tomorrow 
night, and the day after tomorrow. In the spring, 
students make forecasts twice a week, but for only 
two periods, tonight and tomorrow. One of the two 
locations is always the Rutgers Gardens weather 
station located in New Brunswick, New Jersey, 
roughly 1.5 km east of the meteorology 
classrooms. The instructor chooses the other 
location to maximize forecast difficulty. This is 
referred to as the Alternate Location. Students are 
charged with predicting temperature intervals and 
the probability of precipitation (POP) for each 
period and location. For night (day) periods, the 
low (high) temperature is predicted. Participants 
must submit forecasts by 00 UTC. 

All NBFG forecasts made during the four 
semesters between the spring of 2010 and fall of 
2011 inclusive and their corresponding 
verifications have been stored in a database. As a 
result, 6688 forecasts for both precipitation and 
temperature are available for the analysis 
undertaken in subsequent sections. 

2.2 PRECIPITATION SCORE 

A previous incarnation of the NBFG (Croft and 
Milutinovic 1991) also employed probabilistic 
precipitation forecasts. In fact, POPs were 
provided for a variety of accumulated precipitation 
ranges. The ranked probability score (Wilks 1995, 
7.4.8) was used to measure forecast performance, 
but with a distance weighting factor. 

To limit forecasting burden on the students, 
the precipitation portion of the current NBFG was 
simplified to one POP for each location and 
forecast period. In addition to being simple, this 
approach allows for the straightforward 
construction of attributes and reliability diagrams 
and ROC curves. 

POPs are provided to the nearest 10% and 
are assessed using the following half-Brier score: 
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where p is the POP expressed as a number 
between zero and one, o is the observed 



probability of precipitation (either 0 or 1), and EP 
represents the error points attributed to 
precipitation incurred by the forecaster. 
Appropriate EP values are then summed for each 
forecast–observation pair contributed by that 
forecaster to arrive at the forecaster’s overall 
precipitation error score. With this score, a 
forecast POP of 50% generates 2.5 error points 
regardless of the verification. A perfect 
deterministic forecast of 0% or 100% generates no 
error points, but an imperfect deterministic 
forecast (i.e., forecasting 0% when it does 
precipitate) generates 10 error points. Despite the 
instructor’s admonitions not to be overconfident, 
students do construct 10-error-point forecasts on a 
regular basis, as the reliability diagrams will show. 

2.3 TEMPERATURE SCORE 

The NBFG temperature interval score is 
presented in the following way. Let l be the 
forecast lower bound for temperature, u be the 
forecast upper bound for temperature, and T be 
the observed temperature. Temperature error 
points are given by ET = ES + ER, where ES is 
given by u − l, which represents the sharpness of 
the temperature forecast, and ER is given by 
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which represents the reliability of the temperature 
forecast. Gneiting and Raftery (2007) show that 
this scoring rule is proper for a 50% central 
credible interval forecast (Murphy and Winkler 
1974), and Hamill and Wilks (1995) use a similar 
rule. 

Just as for precipitation, a perfect score of 
zero is achievable with a deterministic temperature 
forecast (l = u) that verifies. A wider interval 
increases the sharpness score, but also increases 
the chance that the verifying temperature will be 
within the interval, thus lowering the expected 
reliability score. It may seem that the best forecast 
strategy is to choose an interval such that the 
temperature occurs within it 50% of the time, and 
above or below it 25% of the time each. However, 
because of rounding, temperatures that are just 
outside the interval will not be penalized by the 
reliability score. For example, suppose the true 
high temperature was 72.4°F, and the forecast 
upper bound was 72°F. Then the reliability score is 
still zero because the high temperature will be 

reported as 72°F, whereas the true reliability score 
should be 1.6 in this case. Because of these 
considerations, the best results will be achieved 
when the verifying temperature falls within the 
interval at a rate that is somewhat larger than 
50%; this will be confirmed empirically later. 

 

3. PRECIPITATION FORECAST 
PERFORMANCE 

The attributes diagram (Wilks 1995, 7.4.4) is a 
standard way to assess the quality of probabilistic 
forecasts for dichotomous events. Figure 1 
presents the attributes diagram for all of the 
precipitation forecasts in the NBFG database. The 
attributes diagram presents information regarding 
the reliability and skill of the set of forecasts as a 
whole. In Fig. 1, the diagonal dashed line 
represents perfect reliability; the x-axis is the 
forecast, and the y-axis is the frequency with 
which the event occurs given a forecast of x. From 
the diagram, we can see that POPs of 70–90% 
are quite reliable in this dataset. The distribution of 
forecast POPs shows that the forecasts are 
relatively sharp (many 0% and 100% forecasts), 
but some of this sharpness comes at the expense 
of reliability. It actually precipitates 5% of the time 
when the forecast is 0%, and does not precipitate 
6% of the time when the forecast is 100%. Except 
for the highest POPs, NBFG forecasters have a 
systemic underforecasting bias, as the observed 
relative frequencies tend to be above the perfect 
reliability line. This is most pronounced with the 
30% POP; when that forecast is made, it 
precipitates 47% of the time. 

FIG. 1. Attributes diagram derived from precipitation 
forecasts made over four semesters (Spring 2010–
Fall 2011) as part of the New Brunswick Forecasting 
Game.



NBFG forecasters can use this information to 
calibrate their forecasts. Given the data shown in 
Fig. 1, a first step toward that process would be to 
have all forecasters increase their forecasts by 
10% when they are thinking of a POP between 20 
and 60%. An unanswered question is whether the 
availability of the attributes diagram in real-time for 
a particular semester results in increased forecast 
reliability. 

Figure 1 also indicates the degree of 
resolution and skill relative to climatology exhibited 
by NBFG forecasters. For the most part, forecasts 
display sizeable resolution, although the nearly 
horizontal lines between POPs of 40% and 50% 
and between 60% and 70% indicate somewhat 
less ability to resolve those forecast scenarios into 
separate events. All forecasts except those in the 
20–40% range contribute to positive skill with 
respect to the NBFG climatology. Positive skill is 
provided when the reliability curve is below 
(above) the “no skill” line when the “no skill” line is 
below (above) the “no resolution” line (Wilks 
1995). 

Examining subsets of the NBFG database 
reveal interesting patterns in forecast reliability 
(Fig. 2). For example, when only forecasts for New 
Brunswick are considered, there is an extremely 
large overforecasting bias. A 50% POP leads to 
precipitation only 12% of the time! In part, this is 
likely to be an artifact of the fact that traces of 
precipitation at New Brunswick are not considered 
precipitation, and students are not able to calibrate 
their forecasts to this definition. Other factors that 
are leading to this overforecast bias are unclear 
[Schwartz’s admonition? (Bosart 1983)], but the 

fact that this bias can be pointed out to students is 
important in and of itself. 

In contrast, Fig. 2 shows that forecasts for the 
intentionally difficult Alternate Location are 
pervasively underforecast. Forecasts for the 
Alternate Location are considerably less sharp 
than those for New Brunswick as well (compare 
the forecast distributions in the lower right of Fig. 
2), yet even with the reduced sharpness there is 
still very noticeable overconfidence in predicting a 
0% POP for the Alternate Location. 

Forecasts for Day 1 (tonight and tomorrow) 
mirror the overall reliability. Two interesting 
differences emerge when comparing Day 1 
forecasts to Day 2 forecasts, however. First, there 
is a clear reduction in the sharpness of the Day 2 
forecasts, as evidenced particularly by the greatly 
reduced tendency to forecast a POP of 100%. The 
second difference is seen in the greater amount of 
underforecasting that occurs for midrange 
(especially 30–60%) POPs in the Day 2 forecasts. 

An alternative way of depicting resolution is to 
condition the forecasts based on what happened. 
Given that precipitation did not occur, how often 
was the forecast wrong? This is the probability of 
false detection (POFD), or false alarm rate. Given 
that precipitation did occur, how often was the 
forecast right? This is the probability of detection 
(POD), or hit rate. By applying thresholds to a set 
of POP forecasts, the ROC curve can be 
constructed (Mason and Graham 1999). Because 
the NBFG POPs are multiples of 10%, it is natural 
to use thresholds of 5%, 15%, …, 95% to 
construct the ROC curve, and this is what is done 
to create Fig. 3. When thresholds are very high, no 

FIG. 3. Relative operating characteristic curves for 
precipitation forecasts from four subsets of the New 
Brunswick Forecasting Game database. Day 1 (blue 
circles), Day 2 (red diamonds), New Brunswick (NB; 
green stars), and Alternate Location (AL; green 
stars) forecasts are shown. The area under each 
curve (AUC) is provided in the lower right. 

FIG. 2. Reliability diagrams for four subsets of the 
New Brunswick Forecasting Game database. Day 1 
(blue circles), Day 2 (red diamonds), New Brunswick 
(green stars), and Alternate Location (green stars) 
forecasts are shown. 



forecasts for precipitation are issued, so both the 
POD and POFD are zero. When thresholds are 
very low, each forecast is treated as if precipitation 
will occur, which necessitates that the POD and 
POFD be one. A skilled forecaster will be able to 
detect precipitation without issuing many false 
alarms. This is represented by points in the upper-
left half of the ROC diagram. Hence, the area 
under a ROC curve (AUC) is a common forecast 
quality metric, with 1 being a perfect score, and 
0.5 representing no skill. 

Reassuringly for NBFG forecasters, Fig. 3 
shows that the ROC curves for various subsets of 
the NBFG database all indicate significant skill. It 
is not surprising that New Brunswick forecasts are 
of much higher quality than their Alternate 
Location counterparts are, as this is by design. 
The reduction in skill between Day 1 and Day 2 
forecasts reflects the increased uncertainty 
associated with a longer-range forecast. However, 
the difficulty of Day 2 relative to Day 1 is evidently 
less than the difficulty of the Alternate Location 
relative to New Brunswick. 

4. TEMPERATURE FORECAST 
PERFORMANCE 

Turning our attention to the temperature 
interval forecasts, Fig. 4 shows that the inverse 
relationship between sharpness and reliability 

posited earlier exists within the NBFG. As forecast 
sharpness increases (i.e., the sharpness score 
decreases), the reliability has a tendency to 
decrease (reliability scores increase). This 
tendency is revealed most easily by comparing 
Forecaster 1 (the best temperature forecaster) to 
Forecaster N (the worst). Forecaster 1 and other 
high-ranking forecasters had a roughly even mix of 
sharpness and reliability error points, with a small 
shift toward more sharpness points. Forecaster N 
and other poor performers had narrow intervals, 
leading to good sharpness scores but poor 
reliability scores. A few forecasters ran counter to 
the overall trend, particularly Forecasters C and H. 
Those forecasters were quite reliable, but at the 
cost of wide temperature intervals and hence large 
sharpness scores. 

An alternate way of depicting the reliability of 
NBFG temperature forecasts is to assess the 
frequency with which the observed temperature 
falls below, within, or above the forecast interval. 
Figure 5 displays such an analysis. As was 
suggested by Fig. 4, there is a tendency for 
forecasters at the bottom of the standings to 
perform poorly because of overconfidence. 
Temperatures rarely fall within their intervals, so 
their bars in Fig. 5 are relatively narrow. Only 
Forecaster H (and to some extent Forecaster C) 
bucks this trend. 

Figure 5 also reveals that rounding indeed 
increases the credible forecast interval width 
beyond 50%. All of the top 10 temperature 

FIG. 4. Distribution of temperature error points 
assigned to each of the 22 forecasters participating 
in the New Brunswick Forecasting Game during the 
Fall 2011 semester. Forecasters are sorted in order 
of temperature error points, with Forecaster 1 
achieving the lowest score, and Forecaster N 
recording the highest score. Blue/bottom (red/top) 
regions represent the portion of the temperature 
error attributed to lack of forecast sharpness 
(reliability). 

FIG. 5. Cumulative proportion of temperature 
forecasts that verified below the forecast range (left 
of blue bar), within the forecast range (blue bar), 
and above the forecast range (right of blue bar). 
Dashed lines indicate the 0.25, 0.5, and 0.75 
cumulative frequencies. Forecasters are identified in 
the same manner as in Fig. 4. 



forecasters had observed temperatures fall within 
their intervals more than 50% of the time. The best 
forecasters saw temperatures within their intervals 
60–65% of the time. The degree to which the 
credible interval exceeds 50% depends on the 
variance of the forecast temperature distribution. 
However, the temperature variance will itself vary 
by location and season, which makes it difficult to 
determine a priori the credible interval a forecaster 
should aim for. 

Finally, Figure 5 shows that most NBFG 
forecasters exhibited a cold bias, as it is more 
likely for temperatures to verify above the forecast 
interval than below it. Further analysis indicates 
that this cold bias is present in all semesters for 
both New Brunswick and the Alternate Location, 
but the source of this bias is unclear. 

5. DISCUSSION 

In any forecast contest, it becomes necessary 
to determine how the various elements of the 
forecast combine into an overall score. Many 
contests deal with this issue using skill scores 
(e.g., Bosart 1983, Sanders 1986, Gyakum 1986, 
Hamill and Wilks 1995, Newman 2003), but skill 
scores are not proper in general and hence may 
be gamed (Gneiting and Raftery 2007). The NBFG 
currently uses the simple approach of scaling the 
precipitation error score by an additional factor of 
six. This tends to weight precipitation and 
temperature errors roughly equally. 

Students have been asked on end-of-
semester course evaluations to respond to Likert 
items such as “I enjoyed the NBFG” and “I enjoyed 
the WxChallenge” with a response of one (five) 
indicating strong disagreement (agreement). 
Responses to these questions were collected 
during a period before the NBFG was revised (Fall 
2007–Spring 2009) and during a period where the 
NBFG was fully probabilistic (Spring 2011). Table 
1 provides the results. Despite the small sample 
size for the probabilistic NBFG, a few conclusions 
can be drawn. First, students appear to enjoy the 
probabilistic NBFG and deterministic WxChallenge 
equally (mean 4.46 for each). Thus, at the easily 
quantifiable level, there is no evidence to suggest 
that students prefer probabilistic to deterministic 
forecasting. On the other hand, there has been a 
notable increase in the enjoyment of the NBFG 
after instituting the current contest. Note that 
WxChallenge enjoyment increased as well; 
perhaps students in the spring of 2011 simply liked 
to forecast. However, the increase of over a point 
in students’ enjoyment of the NBFG is fairly 
significant even with the correlation between 

NBFG and WxChallenge ratings taken into 
account (p-value 0.061 for a one-sided t-test). 

While quantitative results shed some light on 
students’ perceptions of these differing forecast 
contests, the “other comments” section of the 
course evaluations can provide windows into 
individual students’ experiences. Many students 
left that section blank, but the following 
conclusions may be drawn from those who did not. 
Generally, students had both positive and negative 
perceptions of the probabilistic NBFG. On the one 
hand, it seems more relevant to real-word 
forecasting and allows students to understand 
what probabilistic forecasting is more fully. On the 
other hand, it can be more time consuming than 
the WxChallenge. 

6. CONCLUSIONS 

The New Brunswick Forecasting Game at 
Rutgers University has been revised from a 
deterministic to probabilistic contest, and forecasts 
and observations from recent semesters have 
been stored in a database to allow for long-term 
verification. Participants forecast high and low 
temperature intervals and POPs. Course 
evaluations suggest that students find these 
changes have made the NBFG more enjoyable, 
but that level of enjoyment is no higher than that 
found for the deterministic WxChallenge. Students’ 
forecasts are skillful and reasonably reliable taken 
together, although notable biases have been 
found in precipitation forecasts depending on the 
forecast location, and temperature forecasts have 
a cold bias. Thus, there is room for students to 
improve their performance. 

The results of this study will be shared with 
students in future semesters as a way to motivate 
understanding the abstract concepts behind ROC 
curves and attributes diagrams. Additionally, 
students will be able to use knowledge of the 
biases found by this study to improve their 
forecasts, at least in theory. Whether this will 
happen in practice remains an open question. In a 
few years, answering that question may become 
tenable, but a perfectly controlled experiment will 
not be possible. 

Additionally, it is planned to provide figures 
like those shown in this study to students in real 
time as forecast windows are scored. The 
combination of attributes diagrams for the class as 
a whole with attributes diagrams that apply to each 
student individually may allow for students to 
calibrate their forecasts more completely. 
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