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1.  INTRODUCTION 
 

The convection-allowing ensembles 
produced at the National Oceanographic and 
Atmospheric Administration (NOAA) Hazardous 
Weather Testbed (HWT) Spring Experiments (e.g., 
Kong et al. 2009) provided an opportunity to study 
ensemble calibration at a convection-allowing 
resolution. Schaffer et al. (2011; referred to hereafter 
as SCH11) examined variations on a two-parameter 
reliability based method of ensemble precipitation 
forecast calibration using these data. One goal of the 
present study is to compare the effectiveness of 
several calibration methods for improving the skill of 
convection-allowing probabilistic precipitation 
forecasts during the 2009 HWT Spring Experiment. 

 Traditional grid point based probabilistic 
forecasts can have similar limitations as traditional 
grid point based deterministic verification methods at 
convection-allowing resolution (e.g., Gilleland et al. 
2009). Neighborhood based methods have been 
proposed to derive probabilistic precipitation forecasts 
using nearby grid points to reduce such limitations. 
Object based methods have also been proposed to 
identify and compare deterministic forecast and 
observed weather systems at potentially different grid 
points. Another goal of the present study is to propose 
a way of deriving object based probabilistic forecasts 
which, along with the neighborhood method, will be 
used to verify the convection-allowing ensemble 
during the 2009 HWT Spring Experiment.  

An object based hierarchical cluster analysis 
found that the precipitation forecasts systematically 
clustered based on model dynamic cores (Johnson et 
al. 2011). The last goal of the present study is to 
evaluate the impacts of model diversity on the skill of 
the neighborhood and object based probabilistic 
precipitation forecasts and the dependence of such 
impacts on calibration. 
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2. DATA AND METHODS 
 

Since 2007 CAPS has generated 
experimental daily real-time, convection-allowing (4 
km grid spacing), ensemble forecasts for the NOAA 
HWT Spring Experiments. In this study, the 2009 
ensemble forecasts are verified and calibrated. The 
2009 ensemble contained 20 members; 10 with 
Weather Research and Forecasting-Advanced 
Research WRF (WRF-ARW; Skamarock et al. 2005), 
8 with WRF-Nonhydrostatic Mesoscale Model (WRF-
NMM; Janjic 2003) and 2 with Advanced Regional 
Prediction System (ARPS; Xue et al. 2003). Initial and 
Lateral Boundary Condition (IC/LBC) perturbations 
were obtained from NCEP Short Range Ensemble 
Forecasts (SREF; Du et al. 2006) and perturbations to 
multiple physics schemes were included as detailed in 
Table 1. Quantitative Precipitation Estimates (QPEs) 
from the National Severe Storm Laboratory Q2 
product are used as the verification data, referred to 
as observations. Twenty-six days of forecast and 
observation data between 30 April 2009 and 6 June 
2009 are used 

To explore the impact of the model diversity 
on the probabilistic precipitation forecast skill, three 8-
member sub-ensembles denoted as “ARW”, “NMM”, 
and “MODEL” are defined as follows. “NMM” contains 
all 8 NMM members. “ARW” contains the 8 ARW 
members with the same IC/LBC perturbations used in 
the NMM sub-ensemble to emphasize model rather 
than IC/LBC differences (Table 1). A Multi-model sub-
ensemble, “MODEL”, is defined by randomly choosing 
4 members from each of the ARW and NMM 
subgroups on each day while still using the same 8 
IC/LBC perturbations. 

 
2.1 Neighborhood based probabilistic forecasts 

Neighborhood Ensemble Probability (NEP; 
Schwartz et al. 2010) is the percentage of grid points 
from all ensemble member forecasts within a search 
radius that exceed a threshold. Thresholds of 2.54 
mm, 6.5 mm, and 12.7 mm for both hourly and 6-
hourly accumulations are used with a search radius of 
48 km.  
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2.2 Object based probabilistic forecasts 

The Method for Object based Diagnostic 
Evaluation (MODE; Davis et al. 2006) is used to 
define objects as contiguous areas exceeding a 
threshold of 6.5 mm after smoothing with a 4 grid 
point averaging radius. Attributes describing each 
object, such as area, aspect ratio and centroid 
location, are then calculated. The similarity of objects 
is quantified using Total Interest (please see Davis et 
al. 2006 and Johnson and Wang 2012 for further 
details) which is a function of the similarity of the 
attribute values.  

An object based probabilistic forecasting 
method is proposed as follows. An object is 
determined to have occurred if the Total Interest 
between the forecast and observed objects exceeds a 
matching threshold. The forecast probability of 
occurrence is generated for each object in a control 
member forecast as the fraction of ensemble 
members with a matching object. 
 
2.3 Verification method 

Forecasts are verified using Brier Skill Score 
(BSS) where the reference forecast is obtained from 
the observed frequency of the event during the 2007-
2010 HWT Spring Experiment periods, excluding the 
day of the forecast. The verification event is observed 
precipitation exceeding a threshold for grid point 
based forecasts and an observed object matching the 
forecast object for the object based forecasts. 

Grid point based forecasts are verified every 
hour for the first 6 hours and every 3 hours thereafter 
for hourly accumulations and every 6 hours for 6-
hourly accumulations. Object based forecasts are 
verified at the 1, 3, 6, 12, 18, 24 and 30 hour (6, 12, 
18, 24 and 30 hour) lead times for hourly (6-hourly) 
accumulations. Statistical significance is determined 
using a one-sided Wilcoxan Signed Rank test for grid 
point based forecasts and permutation resampling for 
object based forecasts. To reduce the sensitivity of 
the object based probabilistic verification to the choice 
of the control member, BSS is aggregated over 50 
repetitions with different randomly chosen control 
members for each forecast day.  

 
2.4 Calibration methods 

To test the sensitivity of the calibrations to 
the length of the training period, both 10-day and 25-
day training periods are used. Unless otherwise 
stated, results are shown using the 10-day training 
period. 

 
2.4.1 Reliability based method 

Reliability based calibration is applied by 
placing the forecast probability into a discrete bin, 
determining the observed frequency for forecasts in 

that bin during a training period, and using that 
observed frequency as the calibrated forecast 
probability. Five hundred bins of variable width are 
used such that there are an approximately equal 
number of samples in each bin. 

 
2.4.2 Two-parameter reliability based method 

A two-parameter reliability based calibration 
of NEP based probabilistic forecasts has been 
proposed by SCH11. This method is similar to the 
reliability based method described above, with two 
key differences. First, the un-calibrated forecasts are 
divided into as many evenly spaced bins as the 
number of ensemble members, instead of 500 
unevenly spaced bins. Second, each of the bins is 
further divided into 7 smaller bins based on the 
average forecast accumulation at all grid points used 
to compute the NEP.  

An analogous two-parameter reliability 
based method is used for the object based 
probabilistic forecasts. The verification event for 
object based forecasts is the observation of a 
matching object, rather than the exceedance of a 
precipitation threshold. Therefore, the forecast 
probability bins are divided into 3 smaller bins based 
on the area of the objects instead of the average 
accumulation.  
 
2.4.3 Logistic Regression 

Logistic Regression (LR; Hamill et. al 2004) 
consists of fitting the following equation to a period of 
training data. 

   (Eq. 1) 
In Eq. 1, P is the forecast probability, xi are the 
predictors, N is the number of predictors, and βi are 
the fitted coefficients. For neighborhood based 
forecasts the mean and standard deviation of each 
member’s NEP, raised to the ¼ power, are used as 
the two predictors. For the object based forecasts the 
number of members with a matching object and the 
natural logarithm of the forecast object area are used 
as the two predictors. 
 
2.4.4 Member-by-member bias adjustment 
 Calibration is also accomplished by adjusting 
for the bias of each member using the Cumulative 
Distribution Function (CDF) of forecasts and 
observations during training. For grid point based 
forecasts, each forecast accumulated precipitation 
value is replaced with the observed value that had the 
same cumulative probability as the un-calibrated 
forecast value during training. For the object based 
forecasts, the CDF of Total Interests between the 
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control forecast objects and objects in other members 
is adjusted to be consistent with the CDF of Total 
Interests between the control forecast objects and 
observed objects. 
 
3. NEIGHBORHOOD RESULTS 
 
3.1 Uncalibrated verification 

NEP probabilistic forecasts are more skillful 
than the traditional ensemble probability (TRAD), 
derived from the percentage of members forecasting 
the event at a single grid point (Fig. 1). TRAD has 
negative skill at many lead times while NEP has 
negative skill only for the least skillful lead times and 
thresholds.  

Un-calibrated forecasts have skill maxima in 
the overnight and early morning hours (approximately 
9-15 and 27-30 hour lead times, valid at 09-15 UTC 
and 03-06 UTC, respectively) and at the 1 hour lead 
time for hourly accumulation. There are skill minima 
during the afternoon for both accumulation periods 
(approximately 18-24 hour lead times, valid 18-00 
UTC), at the 6 hour lead time for 6-hourly 
accumulation and at the 2-4 hour lead times for hourly 
accumulation (Fig. 1). Both the afternoon skill 
minimum and the minimum at 2-4 hours of forecast 
time correspond to the maxima in accumulated 
precipitation forecast bias of most members (not 
shown). The more pronounced 2-4 hour compared to 
the18-24 hour minimum corresponds with greater 
under-dispersion at 2-4 hour lead times. Such under-
dispersion may be a result of assimilating the same 
radar data into all members without convective scale 
IC perturbations. 

 
3.2 Calibrated verification 

After calibration, the probabilistic forecasts 
for all accumulation thresholds have positive skill (Fig. 
1).  Most of the skill increase occurs during the un-
calibrated skill minima.  As such, the diurnal cycle of 
the forecast skill is less pronounced after calibration. 
During the un-calibrated skill minima, the skills of the 
probabilistic forecasts calibrated by various calibration 
methods are qualitatively similar in that differences in 
skill among calibration methods are smaller than 
differences in skill between calibrated and un-
calibrated forecasts (Fig. 1). Although qualitatively 
similar, there are some significant differences among 
the calibration methods. In general, LR tends to be 
best for hourly accumulations and NEPrel tends to 
best for 6-hourly accumulations. NEPba tends to be 
less skillful than LR and NEPrel for the under-
dispersive 2-4 hour lead times. Thus, in addition to 
the intended application (e.g., lead time, time of day 
and threshold) the types of errors to be corrected 
should be considered when choosing a calibration 
method.  In general, SCH11 (NEPba) is the most 

(least) sensitive to the length of the training period 
based on the magnitude and significance of the 
differences in skill for 10 and 25 days of training (Fig. 
2). 

 
3.3 Sub-ensemble verification 

Un-calibrated NEP forecasts from the ARW 
and NMM sub-ensembles have significantly different 
skill, with ARW being the most skillful, for most lead 
times and thresholds after the first couple of forecast 
hours (Fig. 3). There are many lead times when NMM 
has negative skill and ARW has positive skill. MODEL 
is only significantly more skillful than ARW for the 6.5 
mm/hr threshold at the 30 hour lead time. The fact 
that ARW is similarly or significantly more skillful than 
MODEL suggests that there is little advantage of the 
multi-model ensemble for un-calibrated probabilistic 
precipitation forecasts using the neighborhood 
method.  

The calibration decreases the differences in 
the skill among the ARW, NMM and MODEL sub-
ensembles (Fig. 4). In contrast to the un-calibrated 
probabilistic forecast skill, the calibrated probabilistic 
forecast skill of the ARW sub-ensemble is generally 
only significantly greater than the NMM sub-ensemble 
skill for the smaller accumulations at longer 
accumulation periods (e.g., Fig. 4d,e). Unlike the un-
calibrated probabilistic forecast skill, the calibrated 
multi-model sub-ensemble, MODEL, is more skillful 
than the calibrated single-model ARW and NMM sub-
ensembles beyond the 24 hour lead time for all 
thresholds except 12.7 mm/hr. the larger skill of the 
MODEL sub-ensemble at longer lead times suggests 
that the inclusion of models with different convective 
scale attractors may allow for a more complete 
sampling of the true forecast probability distribution 
for the next-day convective scale precipitation 
forecasts. 
 
4. OBJECT BASED RESULTS 
 
4.1 Uncalibrated verification 

The un-calibrated object based probabilistic 
forecasts have negative skill except for the 1-hour 
accumulation at 1 hour lead time and the 6-hour 
accumulation at 18 and 24 hour lead times (Fig. 5). 
The un-calibrated object based skill is negative at 
more lead times than the un-calibrated NEP and 
TRAD forecasts for the 6.5 mm thresholds 
corresponding to the 6.5 mm threshold used to define 
objects. Such result is consistent with the expectation 
that forecasting the probability that a specific object 
will occur is more difficult than forecasting whether a 
precipitation threshold will be exceeded. 

Like the neighborhood based un-calibrated 
probabilistic forecasts (e.g., Fig. 1b), the un-calibrated 
hourly object based probabilistic forecasts have a 
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diurnal cycle with skill minima at 3 and 18 hour lead 
times and skill maxima at 1 and 12 hour lead times 
(Fig. 5a). The more pronounced skill minimum at the 
3 hour lead time, compared to the 18 hour lead time, 
is associated with greater bias in forecast Total 
Interest at the 3 hour lead time.  Thus the ensemble 
members are systematically more similar to each 
other than to the observations. This can also be 
interpreted as a sign of ensemble under-dispersion.  

 
 

4.2 Calibrated verification 
All calibration methods improve on the skill 

of un-calibrated object based probabilistic forecasts 
(Fig. 5). Unlike the neighborhood based forecasts, the 
skills of bias adjusted forecasts are significantly less 
than the skills of forecasts calibrated with LR, SCH11 
and NEPrel at most lead times. Only LR, SCH11 and 
NEPrel result in skillful forecasts at all lead times for 
both accumulation periods (Fig. 5). At most lead times 
LR is also significantly more skillful than SCH11 and 
NEPrel. Like the neighborhood based forecasts, 
calibration results in the greatest skill increases during 
periods of un-calibrated skill minima. Like the 
neighborhood based forecasts, the SCH11 calibration 
is the most sensitive calibration to the length of the 
training period with significantly higher skill for the 
longer training period at many lead times (Fig. 6).  
 
4.3 Sub-ensemble verification 

Like the neighborhood based forecasts, the 
un-calibrated object based probabilistic forecasts from 
the single-model ARW sub-ensemble are significantly 
more skillful than those from the single-model NMM 
sub-ensemble (Fig. 7a,b). Unlike the neighborhood 
based forecasts, there is no advantage of the un-
calibrated multi-model sub-ensemble over the better 
ARW single-model sub-ensemble at any lead time 
(Fig. 7a,b). Like the neighborhood based probabilistic 
forecasts, the skill minimum at the 3-6 hour lead times 
is relatively more pronounced for the NMM sub-
ensemble than the ARW and MODEL sub-ensembles.  

The calibrated object-based probabilistic 
forecasts from the 8 member sub-ensembles have 
positive skill at all lead times (Fig. 7c,d). Like the 
neighborhood based probabilistic forecasts, the 
calibration reduces the differences in skill among the 
sub-ensembles (Fig. 7c,d). Unlike the neighborhood 
based probabilistic forecasts, there is no advantage of 
the multi-model sub-ensemble for the object-based 
probabilistic forecasts before or after calibration, even 
at the later lead times.  

 
 
 
 

 

5.SUMMARY 
The un-calibrated neighborhood based 

probabilistic forecasts show diurnal cycles of skill, with 
minima often below the level of no skill. Calibration 
primarily improves the neighborhood based 
probabilistic forecast skill during the un-calibrated skill 
minima. After calibration the neighborhood based 
probabilistic forecasts are skillful for all lead times and 
thresholds. During the un-calibrated skill minima the 
differences among calibration methods are smaller 
than the differences between calibrated and un-
calibrated forecasts. No calibration method is superior 
for all lead times thresholds. The differences in skill 
between 10-day and 25-day training periods are also 
smaller than the differences between calibrated and 
un-calibrated forecasts. SCH11 is the most sensitive 
to training period length while NEPba is the least 
sensitive. Significant differences in skill between 
single-model ensembles are reduced by calibration. 
After calibration, the neighborhood based sub-
ensemble forecasts have significantly higher skill after 
the 24 hour lead time with the multi-model ensemble 
than the single-model ensembles for some forecast 
thresholds. 

The un-calibrated object based probabilistic 
forecasts have less skill than the un-calibrated 
neighborhood based forecasts. Calibration increases 
the skill of the object-based forecasts at all lead times 
especially, but not only, during the un-calibrated skill 
minima. Skillful forecasts are obtained at all lead 
times after calibration with LR, SCH11 and reliability 
based calibration but not after bias adjustment of 
Total Interest. LR is the most skillful calibration for the 
object-based probabilistic forecasts. The effect of 
training period length on the object-based probabilistic 
forecasts is also greatest for SCH11 and least for bias 
adjustment. Object based calibration also reduces the 
significant differences in skill between the single-
model sub-ensembles. The calibrated object based 
sub-ensemble forecasts show no advantage of using 
multiple models. 

Both neighborhood and object based 
forecasts have the most pronounced skill minima at 2-
4 hour lead times which correspond to enhanced 
ensemble under-dispersion. Future work on how to 
include mesoscale and convective scale initial 
condition perturbations is suggested to reduce under-
dispersion at early forecast lead times.  
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TABLES AND FIGURES 
 

 
 
 

Member IC LBC R MP PBL SW LSM 
ARW CN CN NAMf Y Thom.  MYJ  Goddard Noah 
ARW C0 NAMa NAMf N Thom.  MYJ  Goddard Noah 
ARW N1 CN – em em N1 Y Ferr.  YSU  Goddard Noah 
ARW N2 CN – nmm nmm N1 Y Thom.  MYJ  Dudhia RUC 
ARW N3 CN - etaKF etaKF N1 Y Thom.  YSU  Dudhia Noah 
ARW N4 CN- etaBMJ etaBMJ N1 Y WSM6  MYJ Goddard Noah 
ARW P1 CN + em em N1 Y WSM6  MYJ  Dudhia Noah 
ARW P2 CN + nmm nmm N1 Y WSM6  YSU  Dudhia Noah 
ARW P3 CN + etaKF etaKF N1 Y Ferr.  MYJ  Dudhia Noah 
ARW P4 CN + etaBMJ etaBMJ N1 Y Thom.  YSU  Goddard RUC 
NMM CN CN NAMf Y Ferr.  MYJ  GFDL Noah 
NMM C0 NAMa NAMf N Ferr. MYJ  GFDL Noah 
NMM N2 CN - nmm nmm N1 Y Ferr.  YSU  Dudhia Noah 
NMM N3 CN - etaKF etaKF N1 Y WSM6  YSU  Dudhia Noah 
NMM N4 CN - etaBMJ etaBMJ N1 Y WSM6  MYJ  Dudhia RUC 
NMM P1 CN + em em N1 Y WSM6  MYJ  GFDL RUC 
NMM P2 CN + nmm nmm N1 Y Thom.  YSU  GFDL RUC 
NMM P4 CN + etaBMJ etaBMJ N1 Y Ferr.  YSU  Dudhia RUC 
ARPS CN CN NAMf Y Lin TKE 2-layer Noah 
ARPS C0 NAMa NAMf N Lin TKE 2-layer Noah 
TABLE 1. Details of ensemble configuration with columns showing the members, Initial Conditions (ICs), Lateral 
Boundary Conditions (LBCs), whether radar data is assimilated (R), and which Microphysics scheme (MP; 
Thompson, Ferrier, WRF Single Moment 6-class, or Lin microphysics), Planetary Boundary Layer scheme (PBL; 
Mellor-Yamada-Janjic, Yonsei University or Turbulent Kinetic Energy-based scheme), Shortwave radiation scheme 
(SW; Goddard, Dudhia or Geophysical Fluid Dynamics Laboratory scheme), and Land Surface Model (LSM; Rapid 
Update Cycle or NOAH) was used with each member. Please see Johnson et al. 2011 for physics scheme 
references. NAMa and NAMf are the direct NCEP-NAM analysis and forecast, respectively, while the CN IC has 
additional radar and mesoscale observations assimilated into the NAMa. Perturbations added to CN members to 
generate the ensemble of ICs, and LBCs for the SSEF forecasts are from NCEP SREF (Du et al 2006). SREF 
members are labeled according to model dynamics: nmm members use WRF-NMM, em members use WRF-ARW 
(i.e., Eulerian Mass core), etaKF members use Eta model with Kain-Fritsch cumulus parameterization, and etaBMJ 
use Eta model with Betts-Miller-Janjic cumulus parameterization. 
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Figure 1. Brier Skill Score of traditional ensemble probability (TRAD), NEP without calibration (NEP), NEP calibrated 
using the reliability based method (NEPrel), Logistic Regression (LR), SCH11, and NEP from bias adjusted members 
(baNEP) for (a) 2.54mm/hr, (b) 6.5mm/hr, (c) 12.7mm/hr, (d) 2.54mm/6hr, (e) 6.5mm/6hr, and (f) 12.7mm/6hr. 
 
 
 
 

 
Figure 2. Difference in Brier Skill Score of neighborhood based probabilistic forecasts between 25 days and 10 days 
of training for ensemble calibration methods for (a) 2.54mm/hr, (b) 6.5mm/hr, (c) 12.7mm/hr, (d) 2.54mm/6hr, (e) 
6.5mm/6hr, and (f) 12.7mm/6hr. Markers indicate statistically significant difference between 10 and 25 days of 
training at the 95% confidence level. 
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Figure 3. Brier Skill Score of uncalibrated NEP from single model (ARW and NMM) and multi-model (MODEL) sub-
ensembles for thresholds of (a) 2.54mm/hr, (b) 6.5 mm/hr, (c) 12.7 mm/hr, (d) 2.54 mm/6hr, (e) 6.5 mm/6hr and (f) 
12.7mm/6hr. Statistically significant difference from MODEL is indicated by a square or triangle, for NMM or ARW 
respectively, and significant difference between ARW and NMM is indicated by an asterisk along the horizontal axis. 
 
 
 
 
 

 
Figure 4.  As in Figure 3, except for NEP forecasts calibrated using the reliability based method. 
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Figure 5. Brier Skill Score of object based probabilistic forecasts without calibration (uncal.), calibrated with logistic 
regression (LR), the reliability based method (rel.), the two-parameter reliability based method of SCH11 (SCH11), 
and the individual member bias (ba), for (a) hourly and (b) 6 hourly accumulation periods. 
 
 
 
 

 
Figure 6. Difference in Brier Skill Score of object based probabilistic forecasts between 25 days and 10 days of 
training for ensemble calibration methods for (a) hourly accumulation and (b) 6-hourly accumulation. Markers indicate 
statistically significant difference between 10 and 25 days of training at the 95% confidence level. 
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Figure 7. Brier Skill Score of (a,b) un-calibrated and (c,d) logistic regression calibrated object based forecasts from 
single model (ARW and NMM) and multi-model (MODEL) sub-ensembles for (a,c) hourly and (b,d) 6-hourly 
accumulation periods. Statistical significance is indicated as in Figure 3. 


