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1. INTRODUCTION

With the advent of the Open Radar Data Acquisi-
tion (ORDA) system on WSR-88D radars and the in-
troduction of significantly more powerful signal pro-
cessing hardware comes the opportunity to improve
the method used for estimating the spectrum width,
a measure of the variability of radial wind veloci-
ties within a measurement pulse volume. In addi-
tion, the implementation of new operational modes
for improved data quality, including SZ phase coding
and staggered PRT, will involve very different sig-
nal processing techniques and hence may require
novel methods to meet the WSR-88D specifications.
While spectrum width has not been used extensively
by radar meteorologists in the past, the NEXRAD
Turbulence Detection Algorithm (NTDA), developed
under direction and funding from the FAA’s Aviation
Weather Research Program, uses the WSR-88D
spectrum width as a key input for providing in-cloud
turbulence estimates (eddy dissipation rate, EDR)
for an operational aviation decision support system
(Williams et al. 2005). Achieving improved spectrum
width estimator performance would directly bene-
fit the accuracy of the NTDA product. The Hybrid
Spectrum Width estimator (HSW), which uses three
spectrum width estimators was developed with sup-
port from the NEXRAD Radar Operations Center
(ROC) (Meymaris et al. 2009). The HSW estima-
tor should start being deployed in 2012 with the
build 13 ORDA update. While slightly more com-
putationally intensive, HSW is more accurate and
robust than any of the constituent estimators alone,
including the standard R0/R1 pulse-pair estimator
(Doviak and Zrnić 1993, p. 136) currently used in
the WSR-88D .

Hitherto, the HSW has been developed for
evenly spaced pulse schemes, which is used exclu-
sively on the current NEXRAD system. However,
staggered PRT (pulse repetition time) is currently

slated to be deployed with build 14. Staggered-PRT,
a popular scheme for mitigating the unambiguous
range-velocity dilemma of weather radars, is a puls-
ing scheme in which the radar PRTs alternate be-
tween T1 and T2 where T1/T2 = 2/3 (Zrnić and
Mahapatra 1985). The default spectrum width es-
timator for staggered PRT, in the literature, is the
pulse pair estimator R0/R2, which has poor perfor-
mance for narrow widths and low signal-to-noise ra-
tios (SNR). In this paper, HSW is adapted to this
pulsing scheme. Simulation statistics are presented.

2. Methodology

To evaluate and compare different spectrum width
estimators we generated random complex time-
series data for various true spectrum width, signal-
to-noise ratio (SNR), Nyquist velocities, and num-
ber of pulses scenarios. We used an I&Q sim-
ulation technique based on the method described
in Frehlich and Yadlowsky (1994); Frehlich (2000);
Frehlich et al. (2001) except that the autocorrela-
tion function is that of a weather echo as defined in
Doviak and Zrnić (1993, p. 125). This is a preferred
method for generating complex time-series with a
given average autocorrelation function because it is
not necessary to generate long time-series in or-
der to get the correct temporal statistics unless the
spectrum width is very narrow.

In what follows, the simulator input (“true”) spec-
trum width will be denoted as W , while the esti-
mated spectrum width will be denoted as Ŵ with a
modifying subscript specifying the estimation tech-
nique used. Estimation errors were calculated by
subtracting the simulator input values from the esti-
mated values (i.e. Ŵ −W ). It should be noted that
biases and standard deviations have different impli-
cations for turbulence detection since bias cannot
be mitigated by spatial or temporal averaging while
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random unbiased errors can.
Because of their ease of calculation, we

used autocorrelation-based estimators. The (un-
biased) auto-correlation is defined as Rt =
M−1

t

∑
s V

∗ (s)V (s+ t), where t is the lag in sec-
onds, V are the complex-valued I&Q radar time-
series, the sum is taken over all s such that
both V (s) and V (s+ t) are available (i.e. mea-
sured), and Mt is the number of summands in
the sum. For evenly-spaced time-series, this
can be written as the more familiar Rj =

(N − j)−1∑N−j−1
k=0 V ∗ (kτ)V ((k + j) τ) where τ is

the PRT. The autocorrelation (AC) of a staggered
PRT time-series is not evenly sampled since the
time-series is not. If Tc is defined as T1/2 (and thus
T2 = 3Tc), then R1 and R4 (i.e. the ACs at time 1Tc,
4Tc, resp.) cannot be directly estimated. See figure
1, which shows the number of pairs (i.e. Mj ≡MjTc )
going into the AC estimate for each lag when the to-
tal number of pulses is 80. The reason for the large
variability is the staggered nature of the pulses. For
example, there are only 40 pairs going into the es-
timate R2 since only for s = k (5Tc) = k (T1 + T2),
with k = 0, . . . , 39, are both V (s) and V (s+ 2Tc)
available.

There are two main points to draw from this
discussion. First, there are now a lot more AC-
based estimators one can come up with, especially
when including multi-lag estimators (for example,
R0R2R3R5). Second, it becomes more difficult to
predict how different estimators will perform since
the AC lag estimator errors will fluctuate due to the
fluctuating number of pairs going into the average.

3. Spectrum Width Estimators for
Evenly Spaced Pulses

The assumed form for the magnitude of the average
auto-correlation function of weather is generally as-
sumed to be Gaussian (Doviak and Zrnić 1993, p.
125) given by:

|R (t)| = P exp

(
−1

2

(
πσvt

Vaτ

)2
)

(1)

where P is the true echo power of the weather, σv
is the spectrum width in ms−1, Va is the Nyquist ve-
locity in ms−1, τ is the PRT in seconds, and t is the
lag time in seconds.

a. The Pulse Pair Estimators

The standard spectrum width estimator currently
used in the WSR-88D radars, typically on short PRT

data, is the R0R1 estimator (Doviak and Zrnić 1993,
p. 136), so named because it utilizes the ratio of the
first two lags of the autocorrelation function:

Ŵ01 =
(√

2/π
)
Va |log (R0/ |R1|)|1/2 (2)

Here R0 is the average power of the signal with
noise removed, and R1 is the first lag of the auto-
correlation function. In the event that |R1| < R0,
in which case the log has a negative argument, the
spectrum width is set to 0 as is done on the WSR-
88D. This is derived from eq. 1 by setting up two
equations (R0 = |R (0)| and |R1| = |R (τ)|) with two
unknowns (P and σv) and solving for σv.

In general, two-lag estimators can be written as

Ŵab =
Va
√
2

π
√
b2 − a2

∣∣∣∣log(∣∣∣∣Ra

Rb

∣∣∣∣)∣∣∣∣1/2 (3)

where, if R0 is used, it is always noise corrected.

b. Multi-lag Estimators

Instead of just using two lags, one can use more
lags to fit a Gaussian auto-correlation function.
R0R1R2 is used in the traditional HSW (Meymaris
et al. 2009). Hubbert et al. (2011) used a 7 lag esti-
mator for measuring the spectrum of clutter.

While other approaches could be taken, the sim-
plest is to note that taking the logarithm of both sides
of eq. 1 yields:

log (|R (t)|) = logP − 1

2

(
πσvt

Vaτ

)2

(4)

which is a quadratic equation with respect to t. This
is convenient because one can find a closed form
solution for a least-squared fit. This makes the spec-
trum width estimation nothing more than a linear
combination of the logarithm of the auto-correlation
function at the desired lags. One might be tempted
to create an estimator that uses, say, 10 lags, or
perhaps all available lags. The problem is that as t
gets larger, |R (t)| → 0, but |Rt| 9 0. This is be-
cause, while E [Rt] → 0, E

[
|Rt|2

]
= V [Rt] which

depends on the signal power and Mt. Thus, the
model does not well represent the data, causing
the least-squares fit to be poor. The net effect is
that the more lags are used, the lower the spec-
trum width estimator saturates. Melnikov and Zrnić
(2004) observed this when examining saturation lev-
els for R0R1 and R0R2. The family of multi-lag es-
timators works well, but care must be taken to take
saturation levels into account when deciding which
lags are used.
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Figure 1: The number of pairs going into the AC average for each lag relative to Tc, the common time for
the staggered PRT 2/3 scheme (so Tc = T1/2 = T2/3) when the total number of pulses is 80.

c. The Hybrid Spectrum Width Estimator

For the evenly spaced pulse scheme, this estima-
tor is discussed in detail in Meymaris et al. 2009.
Briefly, the basic idea comes from the fact that dif-
ferent estimators have various strengths and weak-
nesses. For example, R0R1 works well for wide
spectrum widths (relative to the Nyquist velocity),
R1R2 performs well for medium spectrum widths,
andR1R3 performs well for narrow. R0R1,R0R1R2,
and R1R3 are used to determine whether the spec-
trum width is small, medium, or large, taking into
account that certain types of mistakes are worse
than others. The logic for this step is determined
a-priori by using simulations in conjunction with de-
cision trees. Once the size category has been de-
termined, the appropriate estimator is used: R1R3,
R1R2, or R0R1 for small, medium, and large (resp.).
The performance of the estimator has been shown
in that paper to be generally superior to the tradi-
tional R0R1 estimator in places of low SNR and nar-
row true spectrum width.

The approach to developing the HSW is to, first,
identify the 3 estimators to use for small, medium,
and large along with corresponding cutoffs (nor-
malized by the Nyquist velocity). This is done by
examining the performance of the various estima-
tors. Then, using simulations and simple classifica-
tion decision trees, identify the best estimators and
thresholds to determine whether simulated data is
small, medium, or large. The procedure is repeated
for different possible number of pulses. The PRT
chosen for the tuning is the largest one possible,
which is the hardest case to deal with. The SNR
chosen for the tuning in 8 dB.

A case study comparing the traditional R0R1 es-

timator to the hybrid spectrum width estimator for
an evenly spaced pulse scheme is shown in figure
2. The hybrid spectrum width estimator has less
variance and the meteorological features are much
clearer.

4. Proposed Staggered PRT HSW

For staggered PRT data, we chose to look at R0R2,
R0R3, R2R5, R2R7, andR3R7 for the pulse-pair es-
timators and R0R2R3 and R0R2R3R5 for the multi-
lag estimators. Note that when discussing stag-
gered PRT data, the lags are relative to Tc and not
T1 or T2. We also considered averages (various
combinations of two) of the already listed estima-
tors for use in the size determination. Our approach
remained the same as for the evenly-spaced pulse
case. However, the problem is simpler here due to
the fact that the currently proposed NEXRAD vol-
ume control patterns (VCP) that include staggered
PRT have very few options. Namely:

N T1 (µs)
46 1497
56 1251
62 1128
80 880

Table 1: Options for T1 and N in current VCPs that
include staggered PRT

This allows for a more aggressive tuning since, in
the evenly spaced pulse scheme, the tuning had to
accommodate all the Doppler PRTs and range of
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(a) Z (b) V

(c) R0R1 spectrum width (d) Hybrid spectrum width

Figure 2: Case study of evenly spaced data from KOUN May 10, 2011 23:49:54Z. VCP 11, 7.5◦ elevation,
900µs PRT, N = 44.

dwell times.
Figure 3 shows the bias and standard deviations

of the proposed estimators for N = 80, SNR = 8, 20
dB, and T1 = 880µs. It was determined using
this data, along with others (for example, figure 4),
that R0R2 was the best (smallest bias and stan-
dard deviation) for wide normalized spectrum widths
(larger than 0.1341), R0R3 was the best of medium
normalized widths (between 0.0838 and 0.1341),
and R0R2R3R5 was the best for small normalized
widths (less than 0.0838). Note that the normalized
widths here are normalized by the Nyquist velocity
based on Tc. These cutoffs are used only in com-
parison to the true spectrum width and never with
the estimated spectrum widths.

Next, we simulate 10,000 I&Q time-series for the
different values and N , with corresponding PRT, for
various spectrum widths (from 0.5 to 14 ms−1) and

compute each of the different spectrum width esti-
mators. We then feed all the estimator outputs along
with the truth field (small, medium, and large clas-
sification represented as 1, 2, and 3, resp.) into
the MATLAB® decision tree software. This software
generates a very deep tree and thus we trim the
tree down to just 2 decisions for simplicity. It should
be noted that the decision tree software is also pro-
vided with a cost matrix that allows the tree to be
tuned to take into account the fact that some mis-
classifications are worse (more costly) than others.
For example, it is better to use the large spectrum
width estimator on a small spectrum width (result:
poorer performance) than vice versa (result: possi-
bly severe saturation). An example output of this
process is shown in figure 5. Because the deci-
sion trees for the different values of N , with corre-
sponding PRT, turn out to be the same except for
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(a) 8 dB (b) 20 dB

Figure 3: Bias and standard deviation for 7 proposed estimators along with the proposed HSW for T1 = 880
µs, N = 80, and SNR = 8, 20 dB. Note that the input spectrum widths (x-axis) are normalized by the Nyquist
velocity of corresponding to Tc.

(a) 8 dB (b) 20 dB

Figure 4: Bias and standard deviation for 7 proposed estimators along with the proposed HSW for T1 = 1497
µs, N = 46, and SNR = 8, 20 dB. Note that the input spectrum widths (x-axis) are normalized by the Nyquist
velocity of corresponding to Tc.
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the cutoffs, a single decision logic is used with cut-
offs stored in a lookup table. In the case where
N = 62, the decision tree was unable to discrimi-
nate between small and medium with adequate skill,
so in that case the lower cutoff is set to -1, thus en-
suring that the narrow spectrum width estimator is
not used.

5. Results

We use the same simulations (different realizations
of the data, however) to evaluate the hybrid spec-
trum width estimator. Some results shown as 2-D
histograms are shown in figures 6 and 7. The true
spectrum width (x-axis) versus the estimator out-
put (y -axis) are shown for SNRs of 5 and 12 dB,
for both R0R2 and HSW, and for both N = 80 with
T1 = 880µs (figure 6) and N = 46 with T1 = 1497µs
(figure 7). As can be seen for all cases, HSW out-
performs the R0R2 estimator when the true spec-
trum widths are small or medium, and have similar
performance for large spectrum widths.

Bias and standard deviation as a function of true
spectrum width of R0R2 and HSW for varying SNRs
(5, 8, 12, and 10 dB) are shown for both N = 80 with
T1 = 880µs (figure 8) and N = 46 with T1 = 1497µs
(figure 9). As can be seen the performance of HSW
and R0R2 are essentially the same for 20 dB SNR,
but as the SNR decreases the relative improvement
of HSW over R0R2 increases. Specifically, the im-
provement is for the small and medium true spec-
trum widths.

6. Conclusions

A hybrid approach that combines different spectrum
widths shows great promise in producing improved
overall performance for staggered PRT spectrum
width estimation. Marked improvement is seen with
low to medium SNRs (under 20 dB) and narrow to
medium spectrum widths, and at least did no worse
than the R0/R2 estimator. Computationally, the hy-
brid algorithm is fairly modest, requiring fewer oper-
ations than the FFT needed by a spectral technique.

Future work includes further tuning and consid-
eration of other spectrum width estimators. Also,
the algorithm needs to be evaluated on staggered
PRT I&Q data collected from, say, NCAR’s S-POL
or NSSL’s KOUN.
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Figure 5: An example classification tree

(a) R0R2 spectrum width for 5 dB SNR (b) Hybrid spectrum width for 5 dB SNR

(c) R0R2 spectrum width for 12 dB SNR (d) Hybrid spectrum width for 12 dB SNR

Figure 6: 2-D Histogram of true (x-axis) vs estimated spectrum widths (y -axis) for T1 = 880µs, N = 80.
Shown on the left are the results from R0R2 and on the right are the results from the staggered PRT hybrid
estimator. SNRs of 5 dB (top) and 12 dB (bottom) are shown.
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(a) R0R2 spectrum width for 5 dB SNR (b) Hybrid spectrum width for 5 dB SNR

(c) R0R2 spectrum width for 12 dB SNR (d) Hybrid spectrum width for 12 dB SNR

Figure 7: 2-D Histogram of true (x-axis) vs estimated spectrum widths (y -axis) for T1 = 1497µs, N = 46.
Shown on the left are the results from R0R2 and on the right are the results from the staggered PRT hybrid
estimator. SNRs of 5 dB (top) and 12 dB (bottom) are shown.
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(a) 5 dB SNR (b) 8 dB SNR

(c) 12 dB SNR (d) 20 dB SNR

Figure 8: Bias and standard deviation for varying true (x-axis) spectrum widths for R0R2 and HSW.
T1 = 880µs, N = 80. SNRs shown are 5, 8, 12, and 20 dB.
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(a) 5 dB SNR (b) 8 dB SNR

(c) 12 dB SNR (d) 20 dB SNR

Figure 9: Bias and standard deviation for varying true (x-axis) spectrum widths for R0R2 and HSW.
T1 = 1497µs, N = 46. SNRs shown are 5, 8, 12, and 20 dB.


