
 1

 

 

A Three-Time-Level Explicit Economical (3TL-EEC) Time-Difference Scheme  

 

 

 

 

Sajal K. Kar
1,2

  and Zavisa Janjic
2 

1
I. M. Systems Group, Inc., Rockville, MD 

2
NOAA/NWS/NCEP/EMC, Camp Springs, MD  

 

 

 

February 2012 

 

 

 

 

 

 

Corresponding author address: Dr. Sajal K. Kar, W/NP2 RM 207, WWBG 

5200 Auth Road, Camp Springs, MD 20746-4304 

E-mail: Sajal.Kar@noaa.gov 

 



 2

ABSTRACT 

A new three-time-level explicit economical scheme (acronym 3TL-EEC) has been 

proposed that allows a stable time step for gravity-wave propagation that is twice as large 

as the stable time step permitted by the standard three-time-level leapfrog scheme. In a 

two-time-level frame-work, the well-established and widely-used forward-backward 

scheme is already known to allow a stable time step for gravity-wave propagation that is 

twice the time step allowed by the leapfrog scheme. However, when the forward-

backward scheme is applied over two time steps (say, from the time-level n-1 to n+1) of 

the leapfrog scheme, the computational economy of the forward-backward scheme over 

the leapfrog scheme is lost. Thus, there is no benefit in computational efficiency if the 

forward-backward scheme is applied for the gravity waves in combination with the 

leapfrog scheme, e.g., for the advection and Coriolis terms. The proposed 3TL-EEC 

scheme was derived from the forward-backward scheme using an original and innovative 

approach. The new scheme recaptures the latter scheme’s attractive features of 

computational economy in a three-time-level frame-work, and thereby allows for the use 

of the leapfrog scheme for advection and Coriolis effects. Detailed stability properties of 

the 3TL-EEC scheme will be presented for the 1D shallow-water (pure) gravity waves 

and 2D shallow-water gravity waves on an f-plane with uniform advection; and compared 

with the corresponding properties of the leapfrog scheme. The 3TL-EEC scheme, in 

conjunction with the leapfrog scheme for advection and Coriolis effects, has been 

implemented in a global grid-point shallow-water model that conserves potential 

enstrophy and total energy on the Arakawa C grid. Lastly, the numerical accuracy and 

stability of the proposed scheme will be demonstrated and compared to the same aspects 
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of the leapfrog scheme, via numerical time integrations of the aforementioned global 

shallow-water model, starting with the Rossby-Haurwitz wave number 4 initial 

conditions. 

 

1. Introduction 

 The forward-backward (FB) scheme is a 2-time-level scheme that allows a stable 

time step twice that of the standard 3-time-level leapfrog (LF) scheme for the gravity-

wave propagation. Since the FB scheme is a 2-time-level scheme, it has been convenient 

to use another 2-time-level scheme such as the non-split Adams-Bashforth (AB) scheme 

for the advection, as currently done in the NCEP unified Nonhydrostatic Multiscale 

Model on the Arakawa B grid (NMMB) or to use an iterative 2-time-level scheme with or 

without splitting at a higher cost penalty. For details of the NMMB, the reader is referred 

to Janjic (2010) and the references therein. 

Potential use of the LF scheme in place of the AB scheme for advection in 

NMMB, without losing the computational economy of the FB scheme for the gravity-

wave propagation, is our motivation behind this research. Following Janjic’s idea, we 

have developed a new 3-time-level explicit economical (3TL-EEC) scheme that retains 

the computational economy of the FB scheme, and enables use of the LF scheme for 

advection. This scheme is potentially useful for improving the numerical accuracy and 

efficiency of the NMMB. 

In section 2, we present the mathematical formulation of the 3TL-EEC scheme, 

starting with a review of the standard leapfrog (LF) scheme and the forward-backward 

(FB) scheme in case of the 1D shallow-water (pure) gravity waves without rotation and 
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advection. Then, the 3TL-EEC scheme and the 3TL-EEC_LF schemes are introduced in 

terms of the 1D shallow-water waves and later applied to the 2D shallow-water gravity 

waves on a f-plane including uniform advecion. Detailed von Neumann stability analyses 

of the 3TL-EEC and 3TL-EEC+LF schemes are carried out in the framework of the linear 

shallow-water equations. Lastly, the LF and 3TL-EEC+LF schemes are implemented in a 

global, grid-point, nonlinear shallow-water model and time integrations are performed for 

210 days, starting with the Rossby-Haurwitz zonal wavenumber 4 initial condition. A 

brief summary is presented in section 3. 

  

2. The three-time-level explicit economical scheme 

a. Formulation of the scheme 

 To review the FB and LF schemes, and later introduce the 3TL-EEC 

scheme, we employ the 1D shallow-water gravity-wave equations: 

0=∂+∂ uc xtη ,        (2.1a) 

0=∂+∂ ηxt cu ,        (2.1b) 

 

where ),(),( txhHgtx =η  and gHc ≡  denotes the phase speed of the gravity 

waves. Here H is the constant height of the free surface for the basic state; h is the 

deviation of the height from H for a perturbed state; and u is the perturbation velocity in 

the x-positive direction. 
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1) REVIEW OF THE LEAPFROG SCHEME 

Let 1−n , n , and 1+n  denote the indices of the three time levels involved and 

t∆ denotes the time step. The leapfrog (LF) scheme for the 1D shallow-water gravity-

wave equations (2.1a) and (2.1b) is given by 
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− −+
n
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nn

uc
t

ηη
,       (2.2a) 

 0
2

11

=∂+
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− −+
n
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nn
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t

uu
η .       (2.2b) 

 

For a traditional von Neumann stability analysis of the LF scheme, we assume 

solutions for (2.2a) and (2.2b) in the form 

]),(Re[),( 00

ikxnn
euu ηλη = ,       (2.3) 

where λ  is the (complex) amplification factor and k  is the wavenumber in x. The 

amplification factor ( λ ) for the LF scheme [(2.2a) and (2.2b)] satisfies a biquadratic 

equation 

04)1( 2222 =+− λλ p ,        (2.4) 

where tkcp ∆≡ . For (2.4), there are two physical (gravity-wave) modes and two 

computational modes in time. All modes are stable and neutral. For stability, 1≤p . 

 

 

2) REVIEW OF THE FORWARD-BACKWARD SCHEME 

Forward step for (2.1a) 
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Backward step for (2.1b) 
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The amplification factor ( λ ) for the forward-backward (FB) scheme [(2.5a) and (2.5b)] 

satisfies a quadratic equation 

01)2( 22 =+−+ λλ p .        (2.6) 

 

In (2.6), there are two physical (gravity-wave) modes, but no computational mode in 

time. For stability, 2≤p . Since the FB scheme requires 2≤p  compared to 1≤p  for 

the LF scheme, the FB scheme is clearly economical with a stable time step twice as 

large as the LF scheme. 

 

3) THE THREE-TIME-LEVEL EXPLICIT ECONOMICAL SCHEME 

As suggested by Janjic, to construct the 3TL-EEC scheme for the 1D gravity- 

wave system, we first apply the FB scheme from time-level n-1 to n: 
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Then, we reapply the FB scheme from time-level n to n+1: 
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Lastly, we take an average of the respective equations above [i.e., (2.7a+2.8a)/2 and 

(2.7b+2.8b)/2] to introduce the 3TL-EEC scheme: 
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The amplification-factor ( λ ) for the 3TL-EEC scheme [(2.9a) and (2.9b)] 

satisfies the quadratic equations 

0)1( 2 =+λ ,         (2.10a) 

01)2( 22 =+−+ λλ p .        (2.10b) 

Equation (2.10b) is identically same as (2.6) for the FB scheme. Thus, the 3TL-EEC 

scheme maintains the favorable economy and stability properties of the FB scheme. 

While (2.10a) shows that unlike the FB scheme, the 3TL-EEC scheme introduces two 

computational modes; but like the LF scheme, these modes are neutrally stable. 

 

4) A COMBINATION OF THE 3TL-EEC AND LF  SCHEMES 

Including a uniform advection-velocity of U in the x-direction, the 1D shallow 

water equations (2.1a) and (2.1b) can be rewritten as 

0=∂+∂+∂ ηη xxt Uuc ,       (2.11a) 

0=∂+∂+∂ uUcu xxt η .       (2.11b) 

Let us now design a three-time-level scheme for (2.11a) and (2.11b), in which the 

3TL-EEC scheme is used for the gravity-wave terms (i.e., uc x∂  and ηxc∂ ) and the LF 

scheme is used for the advection terms (i.e., ηxU∂ and uU x∂ ). This combination (termed 

as 3TL-EEC+LF) scheme can be expressed as 
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For a von Neumann stability analysis of the 3TL-EEC+LF scheme [(2.12a) and 

(2.12b)], we assume normal-mode solutions of the form 

 )Re(),( 0

ikxnn
eutxu λ= ; )Re(),( 0

ikxnn
etx ληη = ,    (2.13) 

where λ  is the (complex) amplification factor, ( 0u , 0η ) are the wave (complex) 

amplitudes at initial time, and 1−≡i  is the imaginary unity. Substituting (2.13) in 

(2.12a) and (2.12b), and then solving for nonzero values of 0u  and 0η , we derive a 

biquadratic equation for λ  given by 

 01)4()422()4( 2222324 =+−+−−+++ λλλλ qipqpqip ,  (2.14) 

where tkcp ∆≡  (as before) and tkUq ∆≡ . Because of the complex coefficients in (2.14), 

we have not attempted to solve it analytically. For the numerical solutions of (2.14), (i) 

we have varied p over the range of 2≤p , so that the 3TL-EEC part of the 3TL-

EEC+LF scheme can be stable for the gravity-wave terms; and (ii) we have varied  q over 

the range of 1≤q , so that the LF part of the 3TL-EEC+LF scheme can be stable for the 

advection terms. Let jλ , with =j 1, 2, 3, and 4, denote the four roots of (2.14). Then, the 

3TL-EEC+LF scheme is considered to be (a) stable when ελ −< 1j ; (b) neutral when 

ελε +<<− 11 j ; and (c) unstable when ελ +> 1j , where each stability criterion is 

required to be satisfied for all j. Specifically, for 810.1 −×=ε  and ( 20 ≤≤ p , 10 ≤≤ q ),  

we have solved (2.14) in double precision for ),( qpjλ and then plotted the function 



 9

),(max qpj
j

λ≡Λ  in Fig. 1. The region of neutral stability with 1≅Λ  falls below the 

contour labeled 1, and is approximately satisfied by the inequality 19.0/7.1 ≤+ qp . 
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Fig. 1. Contours of the maximum value ( Λ ) from the absolute magnitudes of the four 

roots of the equation (2.14), which governs the amplification factor ( λ ) for the 3TL-

EEC+LF scheme applied to the 1D shallow-water equation including uniform advection. 

The abscissa and ordinate are given by tkcp ∆≡  and tkUq ∆≡ , respectively. The 3TL-

EEC+LF scheme is neutrally stable in the region below the unity contour line. The 

dashed contours fall inside the unstable region. The dash-dotted straight line, 

19.07.1 =+ qp , has been drawn so that the neutral stability region is approximately 

determined by the inequality 19.07.1 ≤+ qp . 

 

 

 

 

5) STABILITY ANALYSIS  OF THE 3TL-EEC+LF AND THE LF SCHEMES APPLIED 

TO THE 2D SHALLOW-WATER GRAVITY-INERTIA WAVE EQUATIONS 

Here, we consider the 2D shallow-water gravity-inertia waves on a f-plane in 

Cartesian geometry, including uniform advection with the velocity components U in x 



 10

and V in y. On a staggered Arakawa C grid, the governing equations are written in a form 

that is continuous in time, but center-differenced in x and y, as follows: 

0)( =++++∂ vucVU yx

y

y

x

xt δδηδηδη ,     (2.15a) 

0=+−++∂ ηδδδ x

xyy

y

x

xt cvfuVuUu ,     (2.15b) 

0=++++∂ ηδδδ y

xyy

y

x

xt cufvVvUv ,     (2.15c) 

where the subscript denotes a second-order centered-difference operator in x or y, and the 

superscript denotes an averaging operator in x and/or y. Both operators are applied over a 

uniform grid interval d. Here, gHc ≡  (as before), and ),,(),,( tyxhHgtyx ≡η . 

 Assuming normal-mode solutions of equations (2.15) in the form: 

 )](ˆexp{)(ˆRe[)(, jldikdittji += ψψ ,      (2.16) 

where 1ˆ −≡i ; and i and j denote the grid-indices in x and y, respectively. Also, k and l 

denote the wavenumbers in x and y, respectively. Substituting (2.16) in (2.15) and 

rewriting the equations we obtain 

 0)ˆˆ(ˆˆˆ)ˆ( =+++∆ vLuKiAidt t ηη ,      (2.17a) 

 0ˆˆˆˆˆ)ˆ( =+−+∆ ηKivFuAiudt t ,      (2.17b) 

 0ˆˆˆˆˆ)ˆ( =+++∆ ηLiuFvAivdt t ,       (2.17c) 

where the non-dimensional parameters A, F, K, and L are defined by 
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≡ ,       (2.18a) 
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ldkd

tfF ∆≡ ,       (2.18b) 
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2

sin
2 kd

d

tc
K

∆
≡ ,        (2.18c) 

 
2

sin
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d

tc
L

∆
≡ .        (2.18d) 

Following subsection 2a.4, the 3TL-EEC+LF scheme for the equations (2.17) can be 

written as 

0)]ˆˆ()ˆˆ([̂ˆˆ)ˆˆ( 11

2
111

2
1 =+++++− −−−+ nnnnnnn

vvLuuKiAi ηηη ,   (2.19a) 

0)ˆˆ(ˆˆˆˆ)ˆˆ( 1

2
111

2
1 =++−+− +−+ nnnnnn

KivFuAiuu ηη ,    (2.19b) 

0)ˆˆ(ˆˆˆˆ)ˆˆ( 1

2
111

2
1 =++++− +−+ nnnnnn

LiuFvAivv ηη .    (2.19c) 

Then, for a von Neumann stability analysis of the 3TL-EEC+LF scheme (2.19), we 

further substitute 

 nn λψψ 0
ˆ = ,         (2.20) 

for û , v̂ , and η̂  in (2.19), and for a nontrivial solution of 0u , 0v , and 0η , obtain the 

governing equations for the (complex) amplification factor λ  in (2.20) as 

 0ˆ)1( 2

2
1 =+− λλ Ai ,        (2.21a) 

 { } 0)1()()(ˆ)1( 222

4
1222

2
1 =+++++− λλλλλ LKFAi .   (2.21b) 

Here (2.21a) corresponds to the stationary geostrophic wave modes in time (one physical 

and the other computational), and (2.21b) corresponds to the transient gravity-inertia 

wave modes in time (two physical and the other two computational). 

 Similarly, the LF scheme for the equations in (2.17) can be written as 

0)ˆˆ(ˆˆˆ)ˆˆ( 11

2
1 =+++− −+ nnnnn

vLuKiAi ηηη ,     (2.22a) 

0ˆˆˆˆˆ)ˆˆ( 11

2
1 =+−+− −+ nnnnn

KivFuAiuu η ,     (2.22b) 
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0ˆˆˆˆˆ)ˆˆ( 11

2
1 =+++− −+ nnnnn

LiuFvAivv η .     (2.22c) 

The amplification factor ( λ ) for the LF scheme (above), satisfies the same equation 

(2.21a) for the stationary geostrophic wave modes, but for the transient gravity-inertia 

wave modes, (2.21b) is replaced by 

 { } 0)(ˆ)1( 222222

2
1 =++++− λλλ LKFAi .     (2.23) 

 

 In the following discussion, we focus only on the stability of the transient gravity-

inertia modes for the 3TL-EEC+LF and the LF schemes. For the particular case of the 

(pure) gravity waves with no advection ( 0== VU ) and no rotation ( 0=f ), equation 

(2.21b) for the 3TL-EEC+LF scheme (or, effectively for the 3TL-EEC scheme) can be 

reduced to the equations 

 0)1( 2 =+λ ,         (2.24a) 

 01)2( 222 =+−++ λλ LK .       (2.24b) 

Here (2.24a) and (2.24b) are analogous with (2.10a) and (2.10b), respectively. For 

stability of the 3TL-EEC+LF scheme in (2.24b), one requires 

222 ≤+ LK , or, 1
2

sin
2

sin

21

22 ≤





+

∆ ldkd

d

tc
, 

for all kd and ld values in the ranges π≤≤ kd0  and π≤≤ ld0 . Thus, the stability 

inequality for the 3TL-EEC+LF scheme is finally reduced to 

 707.0
2

1
≅≤

∆

d

tc
.        (2.25) 

Similarly, using (2.23) with no advection ( 0== VU ) and no rotation ( 0=f ), the 

stability inequality for the LF scheme can be derived as 
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 35.0
22

1
≅≤

∆

d

tc
.        (2.26) 

In (2.25) and (2.26), the ratio dtc∆ can be identified as the (pure) gravity-wave Courant 

number, dtcg ∆≡µ , for the space- and time-discretized systems (2.19) and (2.22). We 

notice that the computational economy of the 3TL-EEC scheme over the LF scheme is 

maintained (not surprisingly) for the 2D shallow-water (pure) gravity waves. 

 For the general case of the gravity-inertia waves with advection, the equation 

(2.21b) for the 3TL-EEC+LF scheme and (2.23) for the LF scheme, need to be solved 

numerically to determine the amplification factor λ . Equations (2.21b) and (2.23) are 

expanded to derive the following biquadratic equations in λ : 

 01)4ˆ()}1(2)(4{)4ˆ( 22234 =+−+−+−+++ λλλλ AiBBAFAiB ,  (2.27a) 

 014ˆ)}12(2)(4{4ˆ 22234 =+−−+−++ λλλλ AiBAFAi ,   (2.27b) 

where 22 LKB +≡ , with A, F, K, and L are as defined in (2.18). For numerical solutions 

of (2.27a) and (2.27b), we set the parameters as follows: 

 


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≤∆++

≤∆+++
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35.0)(: scheme LF

7.0)(: scheme LFEEC-3TL

ld0,kd0

km 100 km, 500

ms2100;ms100

s 10

22

22

1-1-

-14

dtVUc

dtVUc

d

VUc

f

ππ
 .   (2.28) 

The stability inequalities for the two schemes as specified in (2.28) are not analytically 

derived, but are approximate logical extensions of the inequalities in (2.25) and (2.26), in 

which the pure gravity-wave speed c has been augmented by the 2D advection wind-

speed 22
VU + . For solving (2.27), we specify a value of the Courant number 
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dtVUc ∆++≡ )( 22µ , and compute the time step as )( 22 VUcdt ++=∆ µ . Then, 

biquadratic equations in (2.27) are solved in double precision using the IDL subroutine 

FZ_ROOTS. We have computed the roots of (2.27a) for the 3TL-EEC+LF scheme, for 

7.0≤µ  and 71.0=µ , and found the scheme is unstable for 71.0=µ , but neutrally 

stable for 7.0≤µ . Specifically, for 7.0≤µ , 1≅jλ  for j = 1, 2, 3, and 4. Similarly, we 

have computed the roots of (2.27b) for the LF scheme, for 35.0≤µ  and 45.0=µ . The 

LF scheme is unstable for 45.0=µ , but neutrally stable for 35.0≤µ . Thus, the 3TL-

EEC+LF scheme provides a neutrally-stable time step that is twice that of the standard 

LF scheme. 

 To display the stability properties of the two schemes, we have computed the 

maximum value ( Λ ) from the absolute values of the four roots of (2.27a) in case of the 

3TL-EEC+LF scheme and (2.27b) in case of the LF scheme. Specifically, Λ is defined by 

 ),(max ldkdj
j

λ≡Λ ,  4,3,2,1=j .      (2.29) 

For km 100=d , Fig. 2 shows the surface plots of Λ  for the LF scheme using 45.0=µ  

and 35.0=µ . For the same value of d, Fig. 3 shows the surface plots of Λ  for the 3TL-

EEC+LF scheme using 71.0=µ  and 7.0=µ . These two figures clearly show that the 

LF and the 3TL-EEC+LF schemes are (a) neutrally stable for 35.0=µ  and 7.0=µ , 

respectively, and (b) unstable for 71.0=µ  and 45.0=µ , respectively. 
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Fig. 2. LF scheme: surface plot of the maximum value ( Λ ) from the absolute magnitudes 

of the four roots of the equation (2.27b) for (a) 45.0=µ  and (b) 35.0=µ . The abscissa 

and ordinate are given by kd and ld , respectively. The grid size, km 100=d . The (U, V) 

vector is at an angle of 45º with the abscissa. The bump in panel (a) indicates the 

wavenumber location where the LF scheme becomes unstable for 45.0=µ . 

 

 

 
 

Fig. 3. 3TL-EEC+LF scheme: surface plot of the maximum value ( Λ ) from the absolute 

magnitudes of the four roots of the equation (2.27a) for (a) 71.0=µ  and (b) 7.0=µ . 

The abscissa and ordinate are given by kd and ld , respectively. The grid size, 

km 100=d . The bump in panel (a) indicates the wavenumber location where the 3TL-

EEC+LF scheme becomes unstable for 71.0=µ . 
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b. Application of the 3TL-EEC+LF scheme in a global shallow-water model 

To test the effectiveness of the 3TL-EEC+LF scheme in a numerical model that 

bears a conceptual connection with complex three-dimensional atmospheric and oceanic 

numerical models, we have implemented the proposed time-difference scheme in a 

global, grid-point, nonlinear, shallow-water model (Kar et al. 1994, hereafter K94). The 

3TL-EEC+LF scheme for the shallow-water model can be expressed as 

nnnnn
nn

C
m

vvuu
ntmn

~
)()(

22

110

11

=













 ∆
+++

∆Φ
+

∆

−∆∆ −−
−+ ξ

δδ
ηφφηξ

ηξ , (2.30a) 

nnn
nn

A
t

uu

m

~
)(

2

1

2

1
11

=++
∆

−∆ +
−+

φφδ
ξ

ξ ,     (2.30b) 

nnn
nn

B
t

vv

n

~
)(

2

1

2

1
11

=++
∆

−∆ +
−+

φφδ
η

η ,     (2.30c) 

where the details of the notations used in the equations above, can be found in K94. The 

corresponding LF scheme used in the shallow-water model is given by the equations 

(2.14), (2.15), and (2.16) in K94. In addition, to suppress the separation of the numerical 

solutions at even and odd time steps, a time filter (Robert 1966; Asselin 1972) is used in 

the model for the LF and 3TL-EEC+LF time integrations. For an arbitrary prognostic 

field ψ , the Rober-Asselin time-filter is defined by 

 )2(
2

11 −+ +−+= nnnnn ψψψ
ν

ψψ ,      (2.31) 

where ν  is the filter parameter and the overbar denotes a time-filtered quantity. 

In this global, grid-point, shallow-water model, the horizontal finite-difference 

scheme is based on the second-order mass-conserving and partial fourth-order energy and 

potential-enstrophy conserving scheme on the staggered C grid (Arakawa and Lamb 
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1981). A zonal polar filter is employed at the high latitudes so that a reasonably large 

time step can be used without violating the CFL stability restriction on time steps arising 

due to the progressively reduced zonal grid intervals near the poles. Details regarding the 

finite-differencing and the zonal polar filter used in the shallow-water model can be 

found in K94. 

We have carried out a numerical time integration of the global shallow-water 

model using the Rossby-Haurwitz wave initial condition. The non-divergent Rossby-

Harurwitz (hereafter R-H) wave initial condition, originally introduced by Phillips 

(1959), has been adopted by Williamson et al. (1992) in a test suite designed specifically 

for testing newly-developed schemes for the global shallow water models.  

 The constant parameters related to the R-H wave are the zonal wavenumber, 

4=s , 16 s10848.7 −−×== Kω , and the initial depth of the shallow water at the poles, 

m108 3

0 ×=h . In the non-divergent, barotropic continuum, the R-H zonal wavenumber 4 

pattern is analytically determined to move from west to east, without a change of shape, 

at an approximate angular velocity of  1day19.12 −o . Above choice of the parameters ω  

and K leads to an initial zonal wind maximum of -1ms99 and an initial latitudinal wind 

maximum of -1ms65 . Assuming the mean depth of the shallow water as 0h , the free-

surface gravity-wave speed on the sphere is approximated as -1

0 s m09.280≈gh . 

 For the numerical time integrations, the shallow-water model is configured with a 

uniform latitude-longitude grid resolution of o4=∆ϕ  and o5=∆λ . The zonal grid 

interval centered at the free-surface height (h) points of the C grid ranges from a value of 
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555.98 km near the equator to 38.80 km near the poles. The latitudinal grid interval, on 

the other hand, takes on a uniform value of 444.5 km over the entire sphere. 

 The shallow-water model has been integrated in time for 210 days, first using the 

LF scheme and then using the 3TL-EEC+LF scheme. The time steps used for the LF and 

the 3TL-EEC+LF scheme are 40 s and 80 s, respectively, without the polar filter; and 240 

s and 480 s, respectively, with the polar filter. For the Robert-Asselin time-filter applied 

in both schemes, a common value of  125.0=ν  is used. 

 Figure 3 shows the initial free-surface height on a north polar stereographic 

projection, clearly depicting a R-H wavenumber 4 pattern. For time integrations 

performed without the polar filter, Fig. 4 shows the height fields predicted by the time-

filtered LF and 3TL-EEC+LF schemes on day 15, day 30, and day 60. Similarly, for time 

integrations performed with the polar filter, Fig. 5 shows the height fields on day 15, day 

30, and day 60, predicted by the two schemes. On a subjective visual comparison, the 

height fields predicted by the time-filtered 3TL-EEC+LF scheme seem just as stable and 

accurate as those produced by the time-filtered LF scheme. Since the time-filtered 3TL-

EEC+LF scheme, with or without the polar filter, employs a stable time step that is twice 

as large as that the stable time step employed by the time-filtered LF scheme, the 

computational economy associated with the proposed scheme has been firmly established 

by the shallow-water model solutions presented here. 
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Fig. 3. Initial field of the free-surface height (m) on a north polar-stereographic 

projection, for the Rossby-Haurwitz zonal wavenumber 4. The contour interval is 100 m. 
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Fig. 4. Free-surface height field (m) predicted by the global shallow-water model using 

the time-filtered LF scheme, on left column, on day 15 (top), day 30 (middle), and day 60 

(bottom). The corresponding forecasts for the time-filtered 3TL-EEC+LF scheme are 

shown in the right column. There is no polar filter, and the time step used by the LF and 

3TL-EEC scheme are 40 s and 80 s, respectively. 
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Fig. 5. Same as Fig.4, but the polar filter has been used for the time-filtered LF and 3TL-

EEC+LF schemes. The time steps used by the LF and 3TL-EEC scheme are 240 s and 

480 s, respectively. 
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 Using the model predicted wind components and height field, we have also 

computed the global area-averaged total mass (M), total energy (E), and total potential 

enstrophy ( Π ), for the entire duration of the time integration. Figure 6 shows the 

normalized variation of M, E, and Π  in time for the time-filtered 3TL-EEC+LF scheme 

compared to the time-filtered LF scheme. Both schemes display reasonably accurate 

conservation of the global invariant quantities during the 210 days of time integration. 

While acceptable level of conservation of M, E, and Π are maintained by both schemes, 

the polar-filtered LF scheme seems to have an edge over the polar-filtered 3TL-EEC+LF 

scheme for the conservation of E and Π. Beyond 60 days, the R-H wavenumber 4 pattern 

starts to unravel that eventually leads to a wavenumber one pattern. For about 50 days, 

the total potential enstrophy for each scheme remains practically uniform (with and 

without the polar filter), but gradually dampens after that; whether this is related to the 

progressive degeneration of the R-H wavenumber 4 into a wavenumber 1 pattern is not 

necessarily clear. 
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Fig. 6. Time variation of the normalized global integrals of (a) mass, (b), total energy, 

and (c) potential enstrophy, computed from the forecasts of the global shallow-water 

model starting with the initial condition shown in Fig. 3. The solid (dashed) curves 

correspond to the forecasts made using the time-filtered 3TL-EEC+LF (LF) scheme. The 

3 panels on the left column correspond to the time integrations without the polar filter, 

and the 3 panels on the right correspond to the time integrations with the polar filter. 

 

 

 

3. Summary 

 A new three-time-level explicit economical scheme (acronym 3TL-EEC) has been 

proposed that allows a stable time step for the gravity-wave propagation that is twice as 

large as the stable time step required by the standard three-time-level leapfrog (LF) 
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scheme. The proposed scheme employs an innovative averaging of the two-time-level 

forward-backward scheme applied over each of the two time intervals, namely, n-1 to n, 

and then n to n+1, of the standard leapfrog scheme. 

 Stability analysis of the LF, 3TL-EEC and 3TL-EEC+LF scheme were performed 

in context of the 1D and 2D shallow-water gravity waves in presence of advection and 

rotation. The 3TL-EEC+LF scheme was implemented in a global, grid-point, shallow-

water model that conserves mass, total energy, and potential enstrophy in the time 

continuous case. The shallow-water model was integrated in time for 210 days using the 

Rossby-Haurwitz zonal wavenumber 4 initial condition. Numerical results were 

presented for the time-filtered LF and the 3TL-EEC+LF schemes to establish the 

numerical efficiency, stability, and accuracy of the proposed scheme compared to the LF 

scheme. 
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