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Abstract- To meet today's need for more surface measurements, wireless communication 

technology must be incorporated. Hardwired communication prohibits the ability to deploy 

large arrays of multiple sensors in a timely fashion and inhibits opportunities to deploy 

instruments in optimum locations per the needs of sensing. WISARD was a development which 

incorporated wireless technology for two types of measurements: (1) solar radiation, and (2) soil 

parameters. A second goal in the development was to demonstrate the concept of distributed 

processing by dedicating a microprocessor to each sensor. This paper presents some of the 

technical challenges encountered, the technology used, and the results of a successful 

deployment during a winter field deployment. 

  

 

I. Introduction 
 The first use of wireless communication at NCAR for surface meteorological research dates back 

to the 1970s [1].  The communication equipment of that time had limited range, simple networking 

capability, and had high power requirements. With advances in technology, the use of wireless 

communication expanded. One of the first uses of these advances was by Industry to remotely monitor 

equipment in industrial plants. In 2002 the Center for Embedded Networked Sensing (CENS) was created 

to focus on wireless sensing networks, WSN, and set out to explore new technologies to expand the use 

of wireless communication. 

 In parallel with advancements in wireless communication, the need to increase the spatial 

distribution of measurements of surface meteorological parameters became apparent.  It was 

recognized that a single point measurement of soil parameters rarely represented the region of interest. 

To properly characterize a complex environment, such as a forest canopy or diverse rangeland, multiple 

measurements are needed. 

 In this paper we discuss the development of a wireless sensor network dedicated to surface 

meteorological research.   

 

II. History 2003 – 2008 

A. Previous Efforts 

 Based on feedback from the scientific community, we started exploring techniques that would 

allow a significant increase in surface measurements. We quickly realized that some form of wireless 

communication would be required.  A search of commercially available, low powered wireless systems 

led to the MICA2 platform [2].  In 2004 we deployed a WSN soil temperature network based on the 

MICA2 using the TinyOS software package.   72 temperature elements were sampled at 3 locales with 4 

sites each.  Six probes were attached to each MICA and a 5th unit received and forwarded the 30-second 
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sample messages to a local data system.   Although TinyOS supports mesh networking, only a simple star 

configuration was needed.   This MICA2 deployment provided useful insights into using a WSN in our 

applications. One issue was that the MICA’s 12-bit analog-to-digital converter (ADC) was inadequate for 

research grade measurements despite oversampling.   Another issue was the TinyOS software package.   

It required staff to learn a new unique language and became cumbersome. 

 In 2007 and 2008 we partnered with the University of Colorado to develop a WSN to measure 

photosynthetic active radiation (PAR), in a forest canopy [3]. The goal was to design a network consisting 

of 324 PAR sensors distributed vertically at 3 levels on 9 trees. Each level had 12 PAR sensors divided 

between 4 wands.   Each wand also included an attitude sensor.  The engineering task was broken into 3 

parts: (1) sensor design and interfacing (2) transducer calibration and (3) wireless network software to 

handle the flow of data in a distributed processing environment.   While NCAR handled the sensor 

issues, C.U.’s Department of Computer Sciences focused on wireless networking using their Mantis 

Operating System (MOS) [4].  MOS offered the advantage of standard ‘C’ language programming versus 

the TinyOS environment.   On each tree at each level a dedicated processor/radio module was used to 

collect data from the 4 wands.  In 2007 this board was based on a MICA2.   In 2008 the board was based 

on a TelosB.   Ultimately the Wireless mesh networking efforts were unsuccessful largely due to the 

science requirement for continuous 1-second sampling of all PAR transducers.     A soil array was also 

deployed using mesh communications.   It could only support 1-minute reporting while suffering 

excessive battery consumption due to multiple message rebroadcasts and inadequate sleep cycles.   All 

mesh techniques attempted ultimately proved unreliable and cumbersome.  A simple polled staggered 

TDMA reporting method worked well at 3s but could not be fully tested at the 1s rate prior to 

deployment.   Code space restrictions (MICA) and a complex RF environment presented other 

difficulties.  Instead, 3 NCAR/EOL data systems (DSM) were employed to collect processor board 

messages using hard-wired links from 3 trees in 3 separate groves.   The DSMs subsequently relayed 

data via line-of-sight point-to-point radios to a distant hub and ultimately NCAR facilities via the 

internet.  

 

B. Lessons 

 Scientifically these were successful efforts.  Sensor performance and sampling met or exceeded 

the research objectives.   Mixed results investigating various wireless techniques had clear implications.   

(1) Development of a wireless multi-hop, self-healing mesh network is a major effort beyond the scope 

of most observational researchers.   (2) Limiting the number of radios and/or sampling rates enhances 

probability of success using mesh and hopping techniques. (3) Accurate time stamping of data is critical.  

(4) Elaborate RF based time-of-arrival estimations to synchronize time-keeping and/or triangulate site 

locations in a mesh environment are complicated and involve excessive overhead.  (5) Adapting 

commercially available Wireless Networking Radios is our preferred approach to meet future field 

obligations. 

 

III. Wisard Development 

We viewed Wisard as a logical extension of our primary high-end Linux-based data acquisition 

system, DSM.   The DSM already supports multiple interfaces, high rate sampling, secondary product 

derivations, data archival and long-range radio/internet/cell-modem capabilities.  Wisard implements 
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wireless connections with sensor clusters located up to 100 meters from the main DSM or further with 

multiple hops. 

NCAR/EOL developments are driven by the needs of the scientific community.  One 

characterization often requested is the surface energy budget.  This requires a suite of both soil and 

solar radiation measurements.  For soil, we use a set of 4 separate sensors at each measurement 

location. To get a true representation of the surface one must deploy multiple sets of these instruments. 

Incoming solar radiation does not require multiple measurements.  Outgoing and albedo parameters do 

because readings can be quite different over non-homogeneous ground.  Obtaining a representative 

surface energy budget then may require radiation and/or soil measurements to be taken at 4 to 6 

distinct locations for a specific site.  Without the use of a wireless network there is a physical challenge 

connecting all of these sensors to a central data acquisition system.    Cable integrity may be 

compromised (rodents) or routing restricted (roads, ditches).  Also, conductors lying on the ground can 

experience high amounts of induced current from lightning.    

sensor measurement

Kipp & Zonen CG4 longwave radiation

Kipp & Zonen CM21 shortwave radiation

REBS Q7 Net radiometer net radiation

NCAR soil temperature probe 4 levels of temperature

Decagon soil moisture

REBS heat flux plate soil heat flux

Hukesflux TP01 thermal conductivity

WISARD Sensors

 

A. Design Goals 

Focusing on this suite of sensors, we set out to achieve these goals: (1) distributed processing, 

(2) research grade measurements, (3) near real-time data at a continuous 5-second rate, (4) accurate 

time stamping, (5) two-way mesh-network communications, and (6) local backup storage. We did not 

require extremely low power consumption since we could scale up our power systems.  Sampling rates 

faster than 1 sample/s were not required for the sensors that we wanted to spatially distribute. 

 

B. Hardware Implementation 
We chose to address many of these goals by expanding on two successful approaches: the 

intelligent sensor and a server node (mote) to support them.  

1) Intelligent Sensors. 

Intelligent Sensors provide distributed processing at each measurement location.  

Embedded calibrations and unit identifications permit sensors to be arbitrarily moved from location 

to location, or replaced, without the need for editing a centralized database elsewhere.  An 

intelligent sensor consists of the following components: (1) a microprocessor, (2) a common 

communication protocol, (3) a transducer coupled to the medium being measured, (4) a front-end 

interface dedicated to a specific transducer(s), and (5) a unique sensor calibration.  The Microchip 

PIC18F2520 was selected as the microprocessor having adequate memory and digital I/O lines for 

our intelligent sensor boards.  The PIC18F2520 also provides two options for communication, RS232 
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and I2C. Both options were implemented adding flexibility to the sensor.  Figure 1 is an example of 

the interface board used with a Kipp & Zonen CG4 pyrgeometer.  

Wisard sensor transducers output slow changing DC voltages ranging from +10 mV to 0-2 V 

full scale. To handle this wide voltage range, the Microchip MCP3424 18bit differential ADC was 

chosen.  The MCP3424 has up to 4 input channels and 4 gain settings allowing a resolution down to 

+1.9 μV per bit.  This eliminates the need for any signal amplification.   A reference voltage source is 

also provided on the interface board for transducer excitation if required.  Calibration of the sensor 

consists of two steps. The primary calibration focuses on the response of the transducer.  Regression 

analysis of the raw measurements compared with traceable standards produce a unique set of 

coefficients that are stored in the microprocessor’s non-volatile memory.   The secondary calibration 

deals with any temperature dependence of the electronic components.  By including a temperature 

sensor on the board and subjecting it to temperatures from -30 C to 40C, a temperature correction 

can be applied to the electronics, Figure 2.  Each sensor’s microprocessor board is put inside a 

radiometer or encased in a weatherproof cover and potted to prevent damage from exposure to the 

elements.  This also provides further isolation from high-frequency temperature and 

electromagnetic fluctuations. 

 

Figure 1:  The pyrgeometer electronics required a stack configuration. The processor board included a 

single channel ADC to measure the thermopile transducer. The second board had a 4 channel ADC to 
measure multiple thermistors imbedded in the sensor 
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2) Server Nodes. 

Server nodes (motes) acquire data messages from a cluster of intelligent sensors.   They 

were designed around the Microchip PIC24FJ64GB004 Processor, and provide all the power, 

connectors, interfacing and assorted hardware to support basic operations.  It is a single board 

design with all components fitting inside a standard enclosure available from Decagon Devices Inc.    

A mote polls each sensor, packs their data into a single message and telemeters it over a wireless 

link to the primary DSM.    Up to 5 sensors may be attached to a mote over a standard DIN-6 cable 

that provides both power and communications.  We chose an I2C interface for communications.   

I2C is a two wire bus (plus power) with a master device (mote) providing the clock and initiating data 

transfers from multiple bussed slave devices (sensors).    Sensors can be attached and removed from 

the mote dynamically.   A push-button is provided to trigger the mote to scan for what sensors are 

attached when one is added or removed.  Mote software periodically re-scans to determine if any 

have been added or lost.    

3) Radio Communications. 
Mesh networking offers distinct advantages over simple star connections.  Motes can be 

‘chained’ to relay data when not in direct contact with the DSM or added and removed dynamically.   

At about the time we began Wisard, Digi Corp. began offering a new commercial product supporting 

mesh networking.   Because of previously successful experiences using Digi(Maxstream) radios, we 

based our design using their embedded Xbee-DigiMesh (DM) modules.  Although DM is a 

proprietary technique it is a good alternative to Zigbee based solutions.   Both offer message 

hopping and self-healing capabilities.  However, DM provides peer-to-peer rather than parent-child 

relationships.  All nodes can be both a router and end-device.  This significantly improves the ease 

with which a mesh network can be setup.  In addition each can be put into synchronized sleep mode 

to save power.  All radios synchronize between themselves automatically.  Although Xbee’s 

Figure 2: ADC temperature dependency. The upper plot shows ADC count error 
with respect to temperature. The lower plot shows correction to ADC output (1 
count = 1.9 μV) 



  Pg 6 /16 

consume a relatively large amount of energy compared with other sensor-network packages (ex. 

Mica, Telos), they are a drop-in solution and have gained wide acceptance especially in the industrial 

community. 

4) Stand-Alone Capability. 
Mote boards were designed to operate independently, to provide an accurate time stamp 

with each sample collected and to store all data locally.  This allows stand-alone operation and data 

acquisition to continue if the radio link or the primary DSM goes down.   Long-term operations in 

this mode are feasible; however two-way communication and the associated control capability 

would be lost.  Local data storage is provided using microSD flash-memory.   Data messages are 

stored in files using the standard ‘FAT-16 or 32’ file format.   A 2GB flash is adequate for storing six 

months of data for 5 sensors being sampled every second.    

Accurate time keeping is established using a local GPS module, the NEO-6 manufactured by 

Ublox.   The GPS site location is also archived along with the attached sensor identifications and 

data.   Because the gps consumes a high amount of power relative to other components, it is cycled 

on at startup to synchronize operations and then turned off.   Thereafter it is periodically enabled to 

update a local clock.   GPS synchronization typically occurs well within 30-seconds.   The local clock is 

based on either the PIC’s internal real-time clock calendar (RTCC) or a high quality but higher power 

temperature controlled crystal oscillator circuit (TCXO).  Since the highly accurate GPS pulse-per-

second signal is not available most of the time, either of these sources can trigger the processor at 

the beginning of every second.  Thus, sample times are quantized to one second intervals.   The 

RTCC can also be programmed to interrupt the processor after an extended period (seconds to 

weeks) including during deep-sleep mode.    For more information about the clocks and time-

keeping see “Timing Tests” below. 

The mote board and sensors operating voltage is nominally 3.3VDC.   Primary power can be 

supplied from a wide ranging input of 4.7-28VDC and is bucked down to the required level.   Mote 

and sensor operation typically consumes a high amount of power relative to other sensor network 

applications: ~0.3W.  Major sources of power consumption are: GPS radio (up to 100mA non-

continuous), Xbee radio (47mA), sensors (<20mA), mote board (<8mA) and DC-DC step-down 

efficiency (~80-90%).   Motes are typically provided a nominal 12VDC during field operations.   We 

purposely chose to ‘overkill’ the power system using a 12V, 5Watt PV and 7AmpHour battery.   Even 

during the middle of winter in Salt Lake City with several successive days of overcast this source was 

more than adequate to sustain continuous operations.   A ‘3.3VDC’-battery connector is provided so 

that a small AA pack can be installed under the mote board.  This is used for radio range tests and/or 

short term observations lasting up to a day or two. 

Vital status information is monitored and reported along with sensor data.   In particular this 

includes power parameters: primary battery voltage and current, operating voltage (Vcc) and sensor 

current.   Mote software monitors and reports these values at a selectable rate.  If the battery 

voltage drops below a definable level, the sensors, local storage and radio are shut down.  The PIC 

then goes into background monitoring mode awaiting the battery to recharge before resuming data 

collection.  Other status information includes performance parameters generated by the Xbee radio: 

missed syncs, successful transmits, signal strength, etc. 

In addition to the primary Xbee communications port, an RS232 interface provides an 

alternative data destination path and operator console.  The console port can also be used for long-

range radio operations when interfaced to a Digi 9Xtend 900MHz modem.  Operational parameters 
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and rates can all be read or reset by user command.  These include data sampling rates, power 

monitoring, sensor scanning, local storage, GPS sync, Xbee reset, and Xbee status monitoring rates.   

Xbee operating parameters needed for DSM base communications can be read or changed.   The 

GPS, sensors and/or file system can be turned on or off manually.  Vital parameters are stored in 

EEPROM.   These include mote identifiers, all rates, Xbee parameters, and base-line frequencies for 

the TCXO.   LEDs are used as a visual clue for on-site maintenance.   These include a 1-second clock 

heart-beat and sample-telemetry in progress indications.   Other blinking patterns indicate reboot, 

console switching, gps message acquisition/lock and DSM messages received.  

 

C. Software. 
1) Development Environment. 

The intelligent sensors and the mote boards are both based on Microchip Technology 

processors.   The sensors use a low-power 8-bit processor whereas and the mote boards use a more 

highly integrated 16-bit processor.   Code is written in the standard ‘C’ language, with occasional use 

of assembly for low-level access.   Microchip’s MPLAB Integrated Development Environment 

(available for free download) is used for compiling, linking, programming and debugging the 

software. 

 
2) Basic Approach. 

Sensor and mote software are interrupt driven ‘state-machines’.  This applies to I/O 

functions as well as for scheduled events.   To save energy the processor is put to sleep when not 

performing these activities.  The mote can be operated in two modes: self-timed based on 1-second 

intervals and Xbee-sleep based (see Testing for more information.)  In self-timed mode either the 

TCXO or the internal RTCC is used to provide the triggering.   When a 1-second event occurs, a 4-

byte date/time value is incremented as well as a series of soft programmable counter rates, setting 

their associated flags when appropriate.  In Xbee-sleep mode the 1-second event still updates the 

date/time value, however data sampling is initiated when the radio reaches a network synchronized 

‘wake-cycle’. The main processing loop becomes active after interrupt handling completes, testing 

flags and taking appropriate actions: sample sensors, monitor power, scan for new sensors, process 

operator-commands, turn-on GPS, check Xbee status, etc.  The main software loop uses other timers 

to prevent lockup or discontinue activities that do not complete.   For example if the GPS fails to lock 

in its assigned window, it is turned off and restarted later.   A watchdog timer is similarly enabled to 

provide a fail-safe if for example I2C lockup should occur.  When complete messages are ready to 

send to the destination port, they are transmitted as fast as possible.  Message delivery happens 

within 30ms at 38400bps.   Other I/O interrupt handlers are used to test whether sensor data 

packets have been ingested before the next one is polled, whether command or GPS messages have 

been received, or an ADC conversion has completed etc. 

 
3) Sensor Types. 

Sensor types are defined by their unique I2C addresses.   Each has a specific message 

format.   This approach is similar to many commercial I2C devices.  It allows a mote to quickly upload 

and pack sensor data for delivery to the DSM and local store without excessive handling.  Although 

more are possible (extended 10bit I2C addressing), we declared 120 I2C sensors addresses.   Some 

are for status, internal declarations or specific commercial devices.  Most are segmented in blocks of 

four with each set assigned to one of the specific Wisard devices supported: soil, radiometric, met 
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and generic sensors.  Having four ids each allows multiple sensors of the same type to be attached.  

When a sensor’s assigned I2C address is polled, it averages, calibrates and sends scaled integer 

engineering units to the mote.   This response takes 1-20ms depending upon the sensor.   A sensor’s 

I2C address byte precedes its data in an output message.   This type identifier tells the DSM or host 

computing facility how to unpack and interpret its data.  Every sensor also has a unique serial 

number distinct from its type.   A mote periodically scans all possible I2C addresses to determine 

which sensors are attached.    If a sensor at a specific address is there, it responds with its serial 

number.  These serial number messages become part of the archived data record, automatically 

documenting sensor locations and changes. 

 

4) Wisard Message Format. 
Data messages sent to the DSM/local-store have a predefined structure.   We use a binary 

format with no additional encryption to help conserve radio energy.   Three message types have 
been defined: 

IDxxx ‘:’ Version# MsgType Contents as defined by ‘Version#’ CRC EOM 

Sensor Serial Number Messages  

NodeID ‘:’ Version# 0x00 SensorTypeIDs with S/N’s for each CRC EOM 

Data Messages 

NodeID ‘:’ Version# 0x01 Sequence# SensorTypeIDs with data CRC EOM 

Comment Messages 

NodeID ‘:’ Version# 0x02 Printable Character String CRC EOM 

All messages are stored in the data archive but only data messages are processed by a DSM.    

Comment messages are sent by a mote to notify when certain conditions occur or for reference 

information.   These include startup messages (mote serial number, software version, clock source, 

bootup cause), local storage file cycling, low-battery-shutdown, etc.   GPS satellite lock messages are 

also comments, documenting site location and updates to the mote’s local clock. 

Each message begins with ‘NodeID’, which is a printable ASCII string representing the mote’s 

individual identifier: ex “ID17”.   Similar to the sensors, a mote’s identifier is distinct from its serial 

number and its id can be easily reassigned and stored via operator command.  The DSM NIDAS 

(NCAR In-situ Data System) software currently tags these IDs in its own xml configuration principally 

to help assign names in derived products and display titles, however there is no hard and fast reason 

this is required.  It is possible for a base to receive two or more distinct message streams from 

different motes having the same ID#.   The Version# is an important feature.  It indicates which 

lookup-table a DSM or host should use to associate sensor types with data.   An entirely different set 

of 120 addresses and formats can be associated between version numbers.   We currently use ‘1’, 

however certain sensor types are being discontinued and new sensors are being added with ‘2.’   

Data messages also include a sequence number value from 0-255.   These help identify if message 

loss occurs and possibly help sorting operations.  A simple 1-byte CRC is added to test for bit errors.   

No message length is sent, instead a 3-byte end-of-message marks its termination.   We use ETX 

(0x03), EOT (0x04) and CR (0x0D).   The 3 character sequence greatly diminishes the probability of 

having false EOM triggers occurring within the binary data stream. 

Motes can also send messages in two other forms.  The first is ‘ASCII-printable.’   This is 

intended for attaching a mote to a ‘dumb-terminal.’  It consists of space-delimited decoded sensor 
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names, addresses and their scaled integers.   The second is ‘wisard-printable’.   This is the same 

decoded ASCII printable string but it is packaged as a wisard comment message.  It is used as a 

maintenance tool for operators watching streaming DSM mote messages. 

 

5) Operator Interactions. 
Two-way communications allow mote sensing parameters to be dynamically adjusted and 

saved remotely.    All operating parameters are stored in EEPROM and are retrieved upon boot-up.   

Serial commands received through the Xbee or console ports can be used to read or reset these 

values.   This allows motes and Xbee-radios to be easily reassigned and relocated without the need 

to edit and reprogram their software.   Commands are simple ASCII strings terminated with a CR.  

For convenience Xbee base radios broadcast commands to all motes on its assigned channel and 

network.   An individual mote can be addressed using its id number prefixed to the command.  For 

example to check all mote data rates would be “dr<cr>”.    Each would respond with a comment 

message “IDxx=5”.   To reset mote ID17’s data rate to report every 10s would be “#17dr=10<cr>”.   

To boost its radio power would be “#17xb=pl4”, etc. 

 

6) Time-Keeping. 
One important sensor type is a data sample’s local time-tag.’   When a mote initiates a 

polling cycle, it attaches its 4-byte time-tag as sensor type 0x0B.  At the other end, all messages 

received by the DSM are tagged with its own heading including a 4-byte Unix date/time stamp.  

Although redundant to the mote time-stamps, uncertainty about radio message delivery can reveal 

significant differences. 

 

IV. Field Performance 

A. Laboratory testing at NCAR: 

Initial tests involved (1) validating sensor quality, (2) mote functionality, (3) I2C communications, 

and (4) clock performance.   After testing indoors we moved Wisard outside. This allowed a complete 

test of (5) radio communications including the ability to handle multi-hopping.    

1) Sensor Quality. 

To ensure research quality measurements each sensor was individually calibrated. When 

possible the sensors were calibrated in our laboratory.  The soil moisture and thermal properties 

probes were tested in a homogeneous mixture of sand with water for comparison with gravimetric 

standards.  Other sensors were calibrated by the manufacturer. As mentioned above each sensor’s 

processor board was calibrated to eliminate errors due to temperature.  

 

2) Mote functionality. 

Most hardware and software validation tests were straightforward.   Local storage and 

communications were confirmed.  Power traces were tested up to 1A.   The resettable protection 

was checked at 400mA.    Switchable power components were tested to their specifications, well 

above design requirements:  150mA (GPS), 200mA (Sensors), 500mA (3.3 supply).   GPS and radio 

operations were validated and confirmed for non-interference from PIC operations, oscillators, and 

the 330kHz switching DC-DC regulator noise.    TVS surge protectors for power lines were not tested 
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but components have been in other applications.   Temperature chamber profiles were run over 

several days from -30 to +50 to complete the basic tests. 

 

3) I2C Sensor Communications. 

Validating I2C communications was more involved.  Our use of the I2C bus is somewhat non-

standard.   Rather than having a ‘long buss’ with short segments tied to clients, our sensors are 

tethered in essentially a star topology.   The original design provided both ESD (Electro-Static 

Discharge) component protection plus inductive ferrites to filter spurious noise.   These further 

complicated the signal environment.   Spurious capacitance (ex. ESD TVS’s, long/stranded cables, 

etc) on high-speed communication lines deteriorate signal transitions.  In severe cases they 

introduce bit errors or failure of signaling to reach proper thresholds needed for reception.  Poorly 

matched impedances and ‘star’ configurations can introduce reflections/ghosts and spiking/ringing 

causing further signal degradation.  These problems worsen with higher speed signaling (I2C 100kHz 

vs 400kHz).  Various stress tests were performed with long and dissimilar cable lengths, multiple 

sensors, different bus terminating resistors/capacitors, etc.   Electrical signal integrity and digital 

performances were monitored and compared, Figure 3.  From these tests we chose to remove the 

ferrites, adjust the ESD components and maintain bit rates at 100 kHz.   We found that for the cables 

we chose, lengths could extend to 50 feet without the use of buffer-drivers. 

 

 

4) Clock Performance / Time-Keeping. 

An important aspect of the Wisard development was establishing a local ‘real-time’ clock.   

Having an accurate time tag when data is collected is critical.   This is especially true when 

correlating data from different sources.   Wireless communication latency complicates these issues.  

~Receiver       

threshold 

~Receiver       

threshold 

~Receiver       

threshold 

         Ideal, non-loaded I2C Clock Signal                               Bussed I2C Clock Signal at end of 15’ 

cables  

Figure 3: I2C Signal Quality 

I2C Clock: 3-Sensors 25’ cables, 1-Sensor 15’, 1-stub    I2C Clock: Improper termination, 100’ cable: Bad 
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Initial testing focused on a modified approach of the Bresenham Algorithm for generating a good 

internal timer from imperfect clocks.  (See http://www.romanblack.com/one_sec.htm)     

Temperature chamber tests quickly revealed that the internal PIC oscillator was inadequate to 

provide good time keeping.  Microchip provides application notes (AN1155) on how to use a 

temperature sensor and lookup tables to calibrate its RTCC to within +3s/month.    However, we did 

not implement the RTCC on our prototype boards.   Instead we decided to try an external TCXO 

having +2.5ppm stability over temperature.  This was done in part to evaluate whether sub 1-second 

sampling could be supported.  Testing of the TXCO revealed good performance using the Bresenham 

method, in most cases to easily within 0.5s/month over temperature cycling.  We introduced an 

‘adjust-clock-drift’ command value to help achieve this performance.  Thus, an operator or DSM 

software can slightly adjust the center frequency and gradually realign any drift experienced during 

extended exposure to narrow temperature ranges.   We discovered that although 0.1 and 0.01 

second time slicing was feasible, we could not reliably support data rates below 1.0s.   This was in 

part due to the large number of processor interrupts needed to achieve good results.   At 1-second 

timing, the processor interrupts still needed to be about 70/s and much greater for faster rates.  

Rather than select another TCXO with an order of magnitude better stability to avoid calibration and 

adjustment issues, we chose to put that expense toward the GPS and RTCC instead for our 

production boards.  The RTCC method also saved some energy and reduced timing interrupts to 1/s 

to help improve mote response.    We did not run extensive RTCC temperature chamber tests to 

confirm Microchip specifications, but instead focused on outdoor testing to confirm radio telemetry. 

 

5) Radio Communications. 

Six motes with sensors and two ‘Xbee-repeaters’ were deployed in a mesh configuration 

outdoors around our laboratory building, Figure 4.  At least two hopping paths were established.  

Some motes were within line-of-sight of the DSM base.  Others required up to 2 hops to reach the 

base.   Several operated at the ~90m range limit for Xbee’s.    These tests were begun in winter and 

operated until late summer before leaving for the PCAPS experiment.   Initial tests were based on 

the prototype boards but later tests involved version-2, production units.    

http://www.romanblack.com/one_sec.htm
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Figure 4 

The radio environment around the laboratory contributed to the test challenge.   There are 

many Wifi routers and clients active in the 2.4Ghz band (U.S. 2.412-2.462Ghz, channels 1-11) that 

the Xbee modules operate in (ISM 2.402-2.483Ghz).  BlueTooth modules also operate in this band.   

The ISM licensing requires radios to employ spread-spectrum telemetry.    Xbee DigiMesh modules 

use a Direct Sequence Spread Spectrum (DSSS) method as opposed to frequency hopping.   DSSS 

involves a unique binary ‘chip-code’ coordinated at transmitting and receiving ends. A transmitter 

generates pseudo-random noise over an entire spectral band and sends the broadened signal.  A 

receiver de-spreads the spectrum using the same code and mathematically correlates to generate 

signal/noise values to determine probability of having gotten coherent information.   Interfering 

signals introduce more noise but normally correlations remain high.  

During this 7 to 9 month deployment we were able to test two modes of operation with the 

Xbee radios; continuous awake mode and synchronized sleep mode.   Data Rates were attempted at 

1, 2, 5, and 10s.   The continuous-awake mode tests were successful with sampling rates as fast as 

2s.  One-second sampling was possible but overall responsiveness and reliability decreased.   Mesh 

hopping, including re-organized path routing was demonstrated by power cycling individual motes.   

In some cases this also involved low-battery shutdowns.   Two-way communications were 

demonstrated as well.   In order to command one or more motes it was necessary to reduce the 

data-rate during interactions to improve readability and responsiveness.    Occasionally some radios 

lost synchronization and did not re-establish it for extended periods.   We also had periods where 

two-way command and control was inadequate.   The solution we used was to add a heart-beat 

command in the motes.   If not received within a definable period, the mote physically reset its 

Xbee.   We also periodically reset the DSM Xbee base.   These adjustments resulted in reliable 

operation. 
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 The Xbee sleep mode proved much less acceptable.  There were long periods of drop-outs 

and attempts to resynchronize were not always successful.   More problematic was the inability to 

establish good 2-way communications.   Base operator commands rarely worked.   These problems 

were in part due to our short sample periods and using an early version of the Xbee firmware.     We 

were never able to adjust Xbee parameters to ensure long-term success.    

Station time-keeping was monitored during outdoor testing.    The RTCC drift rates were 

high using default calibration parameters: ~1s/day.    PIC processors do include a software resettable 

RTCC calibration adjustment to compensate for differences between individual oscillators.   It can 

also be used the same way as with the ‘adjust-clock-drift’ method noted above (see Microchip’s 

tech. note).    We did not take full advantage of this feature.  Instead we set mote GPS time 

synchronization to occur every 12 hours.   A comparison was made between interfacing a mote to 

our DSM over a serial link versus through the Xbee radio to observe latency issues.   Timing ‘errors’ 

could be substantial with radio messaging.   The DSM time-of-arrival tag versus mote clock 

differences were often up to several seconds.   They also jumped or changed drift rate from periodic 

self-resynchronization of the radios and forced Xbee reset times.   GPS synchronization of the 

serially connected mote, however, combined with an adjusted RTCC calibration setting maintained 

its DSM time-difference to within 0.05s.   Figure 5 shows and example of the difference between the 

serially connected mote and a mote reporting over radio link. 

Figure 5: Difference between DSM message arrival time and reported mote value. 

 

Serial Link: GPS sync 2-hours 

 

Radio Link: GPS sync 2-hours 
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B. PCAPS Field Experiment 

            In the winter of 2011 Wisard was deployed at 7 sites in and around Salt Lake City for the 

Persistent Cold-Air Pool Study project, PCAPS.  Each site had a suite of soil probes and radiation sensors. 

Two sites had a second set of soil measurements.   The soil probes were installed approximately 1 

month before the study began to allow for proper coupling with the environment.   The instrumentation 

operated successfully for over 3 months even during harsh weather conditions.   

 

 

 
 

 

There were problems but none significantly jeopardized overall success.   Several motes had 

episodes when their data were missing in the DSM archive.    Many of these outages were individual 

sensor problems causing I2C bus polling to fail. In these cases, the motes were continually getting 

reset by the watchdog timer.  The biggest problem was with soil temperature probes.  The original 

potting compound used was faulty and wet conditions electrically shorted the signals.  Two motes 

had their I2C circuits damaged and had to be replaced.   Sensor connector corrosion caused some 

outages until all were sealed with conductive grease.   On some occasions motes shut themselves 

down overnight or during extended overcast when their batteries drained below the test limit.   

Some outages were recoverable using the mote local data storage files during post project 

processing.   These were usually from a DSM or radio communications outage.  Lost radio 

communications created gaps but were normally re-established by the periodic Xbee reset in motes 

or the DSM base receiver.   A couple of radios failed from moisture.  Approximately 2 station-weeks 

of data were recovered using this local data storage.  

Site-6: 2 Soil Installations, 1 Radiometer        Site-1: Data Collection/Telemetry continued to work 

Site Setup: Mote waited for Battery to charge               Soil sensors require equalization time 
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Some mote timing problems were experienced.   The primary archive is stamped with the 

DSM’s time-of-message-arrival.  Mote RTCC clock drifts became excessive in some conditions.  The 

GPS clock reset should have been more frequent than every 12 hours.    There were a few cases 

where the GPS jumper positions were set incorrectly resulting in data being incorrectly time tagged.   

By default, mote software boots up with date/time set to ‘zero.’    Until GPS synchronization occurs, 

the values increment properly but are incorrect. There were a few occasions when a GPS reported a 

good satellite lock but the date/time were bogus.   Any data messages having non-deterministic 

times could not be recovered.   

During the deployment mote firmware was updated in all units.   One change added a test 

for GPS date/time sanity, as well as a timer to turn it off if proper lock is not achieved.  EEPROM 

handling was added to allow configuration changes to become permanent.  Operator command 

handling was adjusted to improve Xbee parameter setups and to manually switch between the Xbee 

and RS232 ports. 

Overall mote data message recovery was above 95% despite problems outlined above. 

 

 

V. Future/Ongoing Efforts: 
From the lessons learned during PCAPs and evolving requirements we are continuing to make 

refinements to Wisard.  We have a 3rd version mote board based on a more capable PIC processor 

having significantly expanded program and data memory space, more I/O ports and a USB interface.      

Increased data memory allows message caching: 1-s sample rates might be maintained with reporting 

reduced to 30 s.   New base station/DSM software needed to support caching remains to be written.   

The expanded memory combined with USB interface may be used to ingest camera images.    To save 

power, migrating to Xbee sleep mode operation remains a priority.   Recent tests with the newest Xbee 

firmware from Digi have been encouraging.    Expanded I/O ports and program space on the version3 

design allow it to be used as an intelligent base/repeater in addition to normal sensor sampling.   

Intelligent command handling is needed to provide reliable two-way communications during Xbee sleep 

mode operation.   The new PIC may also expand upon the distributed processing concept.  Sensor 

measurements may be averaged in the mote to reduce message rates and save radio power.   Additional 

time-keeping tests need to be performed with the Bresenham method and dynamic temperature 

compensated RTCC calibration adjustments.  At this time we do not see any need for major 

modifications to the sensor interface design.  
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