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1. INTRODUCTION 

According to FAA statistics, approximately 70% of 

all air traffic delays and flight cancellations in the 

National Airspace System (NAS) are caused by 

severe weather.  While enhancements in current 

forecast products and techniques have 

significantly improved in recent years, additional 

improvements are needed in both the tactical (1-2 

hours) and strategic (greater than 3 hours) time 

horizons.  This deficiency was apparent while 

developing a weather translation model that 

integrates a weather forecast and its inherent 

uncertainty to produce a probabilistic prediction of 

the weather’s impact on the NAS. The research 

presented in this paper concentrates on predicting 

the airport arrival rate (AAR) for the purpose of 

planning Ground Delay Programs, or GDPs.  A 

GDP is a traffic management initiative (TMI) where 

aircraft are delayed at their departure airport in 

order to manage demand at an airport whose 

capacity is constrained due to airport construction, 

equipment failures, or drastic increases in airport 

demand, or weather.  The primary cause of GDP 

issuance is weather, which accounted for over 

90% of the GDPs between 2008 and 2010 (Chan 

et al. 2011).  Over these three years, the most 

frequently cited weather factors were ceilings, 

wind, and thunderstorms. However, the 

uncertainty of the airport capacity predictions in 

these GDPs is directly related to the uncertainty of 

the forecast product utilized (Provan et al. 2011).  

Especially considering that air traffic managers are 

required to predict the capacity at a given airport 

up to 10 hours or more into the future, the 

uncertainty is quite significant.  To account for this 

uncertainty, the Weather Translation Model for 

GDP Planning (WTMG) was developed to 

translate the weather forecasts into probabilistic 

AAR predictions. To make these predictions, the 

model finds correlations between historical 

weather forecast and airport capacity data and 

uses these correlations to project the future airport 

capacities based on recently issued forecasts.  

The following sections will give a general overview 

of the model itself, a review of the weather 

forecast products used and the necessary steps 

taken to incorporate them into the model, a brief 

summary of our results, and then conclusions and 

opportunities for future work and improvements. 

2. MODEL OVERVIEW 

WTMG is a two-part, self-training statistical model 

that operates on a strategic time scale in order to 

provide air traffic managers with enough time to 

plan GDPs.  The model operates in two modes: 

static and dynamic. The static WTMG 

independently generates each future hour’s 

probabilistic AAR prediction based on the forecast 

and airport capacity information available at the 

time of prediction. In this mode, each hour’s AAR 

prediction is made independent of the preceding 

hours in the forecast horizon.  The dynamic mode 

of WTMG generates sample AARs for each future 

hour’s probabilistic AAR prediction based on the 

available weather information at the time of the 

prediction and the previous hour’s sample AARs. 

In contrast to the static mode, this mode of the 

model accounts for the dependence of the AAR for 

a given hour on the AAR of the previous hour by 

using that AAR to condition the error distribution 

that is used to create the capacity samples.  The 

following subsections provide greater information 

about each part of the model. 
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2.1. Prediction Model 

The first part of the model, known as the 

Prediction Model, uses historical weather data 

(observation and forecast) and observed hourly 

AARs to make deterministic AAR predictions.  The 

data used in our research came from two airports, 

Newark Liberty International Airport (EWR) and 

O’Hare International Airport (ORD) between 2008 

and 2010.  The various data sources from these 

airports are organized chronologically based on 

the observation time of the recorded METARs.  

Given a forecast lead time of x hours, a data point 

is created by matching the actual hourly airport 

capacity observations (outcomes) and the 

observed weather conditions to the valid weather 

forecasts (indicators) issued x hours in the past. 

Additionally, depending on the mode in which the 

model is operating, the AAR at the time of the 

prediction (static) or the AAR from the previous 

hour (dynamic), known within the model as the 

“lead AAR”, is added to the array of indicators. For 

example, given a forecast lead time of 6 hours, the 

actual AAR and the weather observation time of 

12 UTC is matched to the forecast information 

from 06 UTC. If the WTMG is operating in static 

mode, the lead AAR would be the AAR observed 

at the time of the prediction (06 UTC), while if it is 

operating in dynamic mode, the lead AAR would 

be the AAR observed at 11 UTC. 

Using this data, the prediction model applies a 

bootstrap regression tree methodology, 

implemented in MATLAB’s TreeBagger function.  

This function first separates the data points to two 

sets: a training set used to teach the model and a 

test set used to assess the accuracy of the model. 

Using the training set, the TreeBagger function 

resamples the data to create a user-defined 

number of bootstrap samples in order to increase 

the robustness of the predictions by simulating the 

effect of having a larger set of data.  A regression 

tree is then built from each bootstrap sample to 

attempt to correlate the lead AAR and weather 

forecast data (indicators) with the actual, observed 

AARs (outcomes). Once a regression tree has 

been built for each bootstrap sample from the 

training set of data, the test set of indicators is 

used to derive a set of deterministic predictions by 

taking the mean of all of the predictions from each 

individual tree. This process is shown in the figure 

below. 

 

Figure 1. Graphical overview of the Prediction Model 
within the Weather Translation Model for GDP 

Planning (WTMG) 

2.2. Sampling Model 

The second part of the model, known as the 

Sampling Model, uses the deterministic 

predictions made by the prediction model to build 

a set of probabilistic capacity scenarios that 

account for the uncertainty in the predictions.  This 

is accomplished by first building an empirical error 

distribution around each deterministic AAR 

prediction.  This is done by grouping all of the 

actual AAR values (from the original data set) for 

each unique predicted AAR.  For example, all of 

the actual AAR data points that resulted in a 

predicted AAR of 38 are grouped together to 

create a single error distribution around a 

predicted AAR of 38.  

The generation of the sample AAR scenarios 

depends on the mode of WTMG: static or 

dynamic. The static mode of the model (see 

Figure 2A) generates each future hour’s 

probabilistic AAR prediction based on the current 

AAR of the airport and the forecast information 

available at the time of the prediction. The 

dynamic mode of WTMG (see Figure 2B) 

generates each future hour’s probabilistic AAR 

prediction based on the previous hour’s sample 

AAR and the forecast information valid at the time 



of prediction. In contrast to the static mode, the 
dynamic mode accounts for the dependency of the 

AARs over time by conditioning the sampling 

distribution in each hour on the sample AAR 

selected in the previous hour in the same capacity 

scenario. For example, the sample AAR for hour 

one is selected from the distribution built around 

the AAR prediction made from the current capacity 

scenario of the airport and the valid weather 

forecast information.  Thereafter, the resulting 

sample AAR from hour one is then used as the 

“lead AAR” for hour two to condition the ARR 

prediction and the resulting error distribution used 

to select the sample AAR. This process continues 

through the forecast horizon, usually 10 hours. 

3. WEATHER FORECAST PRODUCTS 

During this project, two forecast products 

distributed by the National Weather Service were 

utilized: the Localized Aviation Model Output 

Statistic (MOS) Product (LAMP) and the Terminal 

Aerodrome Forecast (TAF).  These products were 

chosen based on a number of factors, most 

notably their public availability, popularity among 

aviation forecasters, controllers, and dispatchers, 

as well as their ability to forecast multiple sensible 

weather fields.  As previously mentioned, data for 

only EWR and ORD between 2008 and 2010 was 

downloaded to train and test WTMG.  The 

following subsections will give a brief overview of 

these weather forecast products and how they 

were processed to be used within the model. 

3.1. Localized Aviation MOS Product (LAMP) 

Developed by the National Weather Service’s 

(NWS) Meteorological Development Laboratory 

(MDL), the Localized Aviation MOS Product issues 

hourly forecasts for 1,591 stations across the 

CONUS, Alaska, and Hawaii (Ghirardelli and 

Glahn 2010).  Each forecast issued has a forecast 

horizon of 24 or 25 hours, depending on the run 

time of the product, with a temporal resolution of 1 

Figure 2. Static (A) and dynamic (B) sampling methodologies 



hour. While there are forecasts across the entire 

U.S., the forecasts themselves are only valid over 

the terminal area, or a five statute mile radius from 

the center of the airport runway complex.  The 

LAMP fields used by WTMG include deterministic 

forecasts of temperature (TMP), dewpoint (DPT), 

wind direction (WDR), wind speed (WSP), wind 

gust (WGS), visibility (VIS), visibility conditional on 

precipitation occurring (CVS), ceiling height (CIG), 

ceiling height conditional on precipitation occurring 

(CCG), sky cover (CLD), obstruction to vision 

(OBV), and precipitation type (TYP).  For 

precipitation, WTMG utilizes probabilistic forecasts 

of precipitation occurring on the hour (PPO), 

measurable precipitation in a six hour period 

(P06), the occurrence of freezing precipitation 

conditional on precipitation occurring (POZ), and 

the occurrence of snow conditional on precipitation 

occurring (POS). 

Both the probabilistic (TP2) and the deterministic 

(TC2) thunderstorm forecasts with LAMP are used 

by WTMG. These forecasts predict the occurrence 

or non-occurrence of one or more cloud-to-ground 

lightning strikes in a 2 hour period in a 20 km grid 

box.  The probabilistic field forecasts the 

probability of thunderstorms occurring the two 

hour period ending at an indicated time, while the 

deterministic field is a categorical forecast (yes or 

no) of thunderstorms occurring in the two hour 

period ending at an indicated time. The unique 

feature about both of these forecasts is that they 

are valid over a two hour period and in some 

cases there is an overlap of forecasts. A 

schematic of this valid time period is shown in 

Figure 3.  In the figure, the blue arrow indicate 

overlapping two-hour valid periods out to 7 or 8 

hours from the time issuance and the green arrow 

represent the subsequent two-hour valid periods, 

ending on even UTC hours. For the purposes of 

WTMG, a probabilistic and deterministic 1-hour 

thunderstorm forecast was derived by using the 

most recently issued forecast when there is an 

overlap.  For example, based on the 09 UTC 

example in figure above, the WTMG uses the two-

hour LAMP thunderstorm forecast from 12 UTC for 

the 11 UTC prediction time. 

While the majority of the fields used from the 

LAMP were able to be directly imported into 

WTMG, a few fields required additional 

processing.  The LAMP sky cover, obstruction to 

vision, and precipitation type fields were converted 

into numerical values as the model was unable to 

process categories in their original format.  For 

example, instead of the clear (CL), few (FW), 

Figure 3. Schematic of LAMP Thunderstorm 2 hour valid periods (Image from 
http://www.nws.noaa.gov/mdl/gfslamp/docs/Tstorm_proj_schematic.pdf) 



scattered (SC), broken (BK), and overcast (OV) 

sky cover categories used in the LAMP, they were 

simply converted to a 1, 2, 3, 4, or 5, respectively.  

The wind fields in the LAMP also required 

additional processing.  In order to provide WTMG 

with a measure of severity for these fields, they 

were organized into categories (see Table 1). 

Table 1. Wind Speed and Gust categories 

Group 
Number 

Wind Speed  
Groups (kts) 

Wind Gust 
Groups (kts) 

1 0 - 5 0 - 13 

2 6 - 7 14 - 19 

3 8 - 10 20 - 24 

4 11 - 14 >= 25 

5 15 - 17   

6 >=  18   

These categories were subjectively chosen based 

on the distribution of all the wind speed and wind 

gust observations within the three years of data 

used by WTMG.  Similar to the other processed 

LAMP fields above, the categories provide the 

model with a measure of severity for the wind 

fields forecasted. 

3.2. Terminal Aerodrome Forecast (TAF) 

The Terminal Aerodrome Forecast (TAF) is a 

concise operational forecast product consisting of 

the expected meteorological conditions significant 

to aviation at an airport for a specified period of 

time (Caldwell 2008).  Scheduled TAFs are 

prepared and issued by the National Weather 

Service every six hours, four times per day at 00, 

06, 12, and 18 UTC and is valid for 24 or 30 hours.  

However, unscheduled TAFs or amendments are 

issued if and when a forecaster recognizes 

significant difference between forecasted and 

observed conditions that would lead to a change in 

flight category value.  For the purposes of the 

WTMG, deterministic forecasts of wind direction, 

wind speed, wind gust, ceiling, visibility, and 

significant weather are used. Similar to the LAMP, 

the spatial resolution of the TAF is the terminal 

area, which is defined as a 5 statue mile radius of 

the center of the airport’s runway complex. 

Similar to the LAMP, a number of forecast fields 

within the TAF required additional processing 

before it was able to be fully utilized by WTMG. 

The ceiling and visibility fields were organized into 

the same categories used by the ceiling and 

visibility fields found in the LAMP.  This conversion 

was done by simply comparing the forecasted field 

in the TAF to the category definitions of these 

fields in the LAMP and then assigning it the 

appropriate category number. The LAMP 

categories for ceiling and visibility are shown in 

Table 2. 

Table 2. LAMP Ceiling and Visibility categories 

Category 
Number 

Ceiling  
Groups 

Visibility  
Groups 

1 < 200 ft < 1/2 mile 

2 200-400 ft 1/2- < 1 miles 

3 500-900 ft 1- < 2 miles 

4 1000-1900 ft 2- < 3 miles 

5 2000-3000 ft 3-5 miles 

6 3100-6500 ft 6 miles 

7 6600-12,000 ft > 6 miles 

8 
> 12,000 ft or  

unlimited 

Additionally, the significant weather forecast within 

the TAF was processed in order to summarize the 

forecasted weather into a singular event. To do 

this, a subjective order of severity was developed 

(see Table 3) based on the impact these weather 

events would have on an airport. For example, a 

frequently used TAF significant weather forecast in 

the spring and summer months is “TSRA BR,” 

which is translated to thunderstorm with moderate 

rain, and mist.  WTMG is unable to process each 

one of these weather events together, so it is 

summarized into a single event by choosing the 

event of maximum severity in the table below, 

which in this case is thunderstorm.



 

Table 3. Order of severity for TAF significant 
weather field 

Order of Severity 

1 - Tornado 9 - Ice Pellets 

2 - Thunderstorm 10 - Rain 

3 - Squalls 11 - Fog 

4 - Blowing Snow 12 - Drizzle 

5 - Snow 13 - Mist 

6 - Freezing Rain 14 - Smoke 

7 - Freezing Drizzle 15 - Haze 

8 - Freezing Fog   

Lastly, similar to the forecast fields in the LAMP, 

the wind speed and wind gust forecasts in the TAF 

are organized into categories. The categories 

used are the same ones used by the LAMP, 

shown in Table 1. 

 

4. RESULTS 

Four different versions of the model were built and 

tested based on the two different modes of the 

model and forecast products. The different 

versions are: LAMP/Static, LAMP/Dynamic, 

TAF/Static, and TAF/Dynamic.  Each version of 

the model contains a unique set of regression 

trees for each lead time from 1 to 10 hours into the 

future. For each model instance the two parts of 

the model, prediction and sampling, were 

evaluated for their accuracy and robustness, 

respectively. 

For the prediction model, the primary metric used 

to evaluate the predictions is the root mean 

squared error (RMSE) between the predicted AAR 

and the actual AAR. This metric was chosen as it 

places a greater weight on large outlier errors than 

a linear distance measure. The unit of RMSE is 

the same as the unit of the AAR, arrivals per hour. 

In addition to the four instances of the model, two 

baseline RMSEs are used for comparison.  The 

baseline RMSEs are the results of a simple naïve 

predictor that assumes a constant AAR, 

regardless of the weather.  The “Baseline – Static” 

model uses the actual AAR at the time of the 

forecast as the predicted AAR for each hour of the 

forecast horizon.  The “Baseline – Dynamic” model 

assumes that the AAR from the previous hour is 

always available and uses that for its prediction.  

Both of these baseline models represent the 

benefit that WTMG achieves in prediction 

accuracy by incorporating weather information. 

The RMSE comparisons between the four model 

instances and the two baseline models are shown 

below.

 

Figure 4. RMSE by lead time for EWR 

In the figure, two distinct patterns between the two 

different modes of the model are easily 

discernible. First, the static WTMG and static 

baseline model (solid green, red, and blue lines) 

show an increase error at the longer lead times.  

This trend can be attributed to the fact that the 

lead AAR becomes an increasingly weaker 

predictor as the lead time approaches 10 hours.  

Second, the dynamic WTMG and dynamic 

baseline model (dashed green, red, and blue 

lines) show a relatively steady error for all 10 

hours of lead time.  This pattern is the result of the 

lead AAR not having as much of an impact on the 

overall error since the previous hour’s AAR is 

always used as an indicator. 

In terms of weather product comparison, the 

LAMP static models slightly, but consistently 

outperform the TAF static models for lead times 

above two hours.  For the dynamic models, the 

performance of the LAMP and TAF versions are 

about the same as neither outdoes the other. 



Perhaps the most notable pattern in the figure is 

the improvement in the RMSE of the WTMG 

predictions compared to the baseline RMSE 

prediction models.  The static WTMG shows the 

greatest improvement as it produces increasingly 

better predictions over all 10 hours ranging from 

between 1 and 1.5 flights per hour at a one hour 

lead time to approximately 3.5 flights per hour for 

those lead times greater than 8 hours. On the 

other hand, while there is a noticeable 

improvement in RMSE between the dynamic 

WTMG and the dynamic baseline model, the 

overall improvement remains the same for the 

forecast horizon, with error reductions of 

approximately 40% for each lead time, relative to 

the baseline. 

To evaluate the sampling model, WTMG was 

analyzed during time periods that GDPs were 

issued in response to weather at EWR. For each 

one of these times, the sampling model was run 

using the weather forecast and airport capacity at 

the time of issuance.  For each GDP, 100 sample 

scenarios were generated with a forecast horizon 

of 10 hours.  These predictions were then 

compared to the actual AARs to determine how 

well the sampling model captured the actual errors 

the AARs produced by the prediction model.  

For this analysis, two methods were used: capture 

rate and cumulative capture rate.  Given a value x 

between 0 and 100, an x-th percentile capture 

occurs in a particular instance if the actual hourly 

AAR falls inside the central x-th percentile of the 

sample AARs for that hour.  The fraction of 

scenarios in which a capture occurs at a given 

lead time across all GDP instance represents the 

x-th percentile capture rate for that lead time.  The 

cumulative capture rate tracks how well the 

uncertainty in the cumulative AAR up through a 

given lead time is modeled.  This metric uses 

cumulative sample AARs and cumulative actual 

AARs to determine a capture at each lead time. 

For a perfect error distribution, the capture rate 

would match the percentiles.  For example the 50
th
 

percentile capture rate would be 0.5. 

Figure 5, below, shows the hourly (left) and the 

cumulative (right) capture rates for the 

LAMP/Static version of WTMG for EWR. In the 

figure, four different percentiles are plotted: 30 

(green), 50 (red), 80 (blue), and 90 (black).  The 

hourly capture rate plot shows that the plotted 

percentiles are much higher than their target rates.  

This suggests that the sample distributions 

created by the sampling model allow for too much 

error around the hourly AARs produced by the 

prediction model.  In the cumulative capture rate 

plot on the right, however, while the plotted 

Figure 5. Hourly (left) and cumulative (right) capture rates for EWR 



percentiles are high at the early lead times, the 

capture rates gradually decrease and eventually 

drop below the target values at 10 hours. 

5. CONCLUSIONS, IMPROVEMENTS, & 

FURTURE WORK 

The weather forecast products used in this effort 

provide WTMG with satisfactory information, but 

enhancements are necessary.  Although the TAF 

is the preferred product in aviation weather, it is 

not detailed enough to adapt to fast-changing 

weather events. It does well as a general, strategic 

forecast product, but a higher resolution product is 

better for tactical decision making.  On the other 

hand, the LAMP is a sufficient supplement to the 

TAF, particularly in the tactical time frame. With a 

high temporal resolution and a frequent update 

cycle, the LAMP provides the most up-to-date 

information when it is required.  However, the lack 

of spatial resolution in the LAMP hinders its 

performance in the WTMG.  Since the resolution 

of the LAMP is restricted to the terminal area, any 

weather occurring beyond the area is unable to be 

accounted for in the forecast. 

Through this research, a number of important 

model improvements have been found to be 

necessary, especially for future TFM work: 

(1) Improved probabilistic weather forecasts. 

(2) Higher resolution thunderstorm forecasts 

both spatially and temporally. 

(3) Advanced model physics and algorithms 

that can accurately parameterize 

mesoscale phenomena in and around the 

terminal area.  

(4) Higher resolution forecasts in the terminal 

area. 

Future work includes further refining the WTMG to 

effectively utilize current forecast products and the 

integration of the experimental gridded LAMP 

products (Ghirardelli 2011) as well as LAMP 

Convection (Charba et al. 2011).  Both of these 

products may help provide the necessary weather 

information in the surrounding terminal area that 

can improve the airport arrival predictions made by 

WTMG. 
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