Several recent studies have demonstrated the importance of incorporating wave action into the NWS coastal flood program. To follow up on these studies, this paper looks at the potential of applying recently developed empirical parameterizations of wave setup, swash, and runup to the NWS forecast process. Additionally, the wave parameterizations are incorporated into a storm impact scaling model that compares extreme water levels to beach elevation data to determine the mode of coastal change at predetermined “hotspots” of interest. Specifically, the storm impact model compares the approximate storm-induced still water level, which includes contributions from tides, storm surge, and wave setup, to dune crest elevation to determine inundation potential. The model also compares the combined effects of tides, storm surge, and the 2 % exceedance level for vertical wave runup (including both wave setup and swash) to dune toe and crest elevations to determine if erosion and/or ocean overwash may occur. The wave parameterizations and storm impact model are applied to two cases in 2009 that led to significant coastal impacts and unique forecast challenges in North Carolina: the extratropical “Nor'Ida” event during 11-14 November and the large swell event from distant Hurricane Bill on 22 August. The coastal impacts associated with Nor'Ida were due to the combined effects of surge, tide, and wave processes and led to an estimated 5.8 million dollars in damage. While the impacts from Hurricane Bill were not as severe as Nor'Ida, they were mainly associated with wave processes. Thus, this event exemplifies the importance of incorporating waves into the total water level and coastal impact prediction process. These examples set the stage for potential future applications including adaption to the more complex topography along the New England coast.
Supplementary URL: