3A.3: Spatial Extreme Value Analysis for Large-Scale Severe Weather Indicators

93rd AMS Annual Meeting
25th Conference on Climate Variability and Change
NARCCAP Session
7th January 2013, Austin, Texas

Eric Gilleland
Co-authors: Barbara G. Brown and Caspar M. Ammann
Weather and Climate Impacts Assessment Program
National Center for Atmospheric Research
Research Applications Laboratory

Copyright NCAR 2013
Scale of Extreme Weather Events

2006 European Heat Wave (Fig. from KNMI)

F5 Tornado in Elie Manitoba on 22nd June 2007

Copyright NCAR 2013
Large-scale indicators (CAPE and Shear)

W_{\text{max}} = \sqrt{2 \text{CAPE}} \text{ (m/s)}

<table>
<thead>
<tr>
<th>Non-severe</th>
<th>Hail < 1.9 cm Winds < 55kts. No tornado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>Hail ≥ 1.9 cm 55 ≤ Winds < 65 Or tornado</td>
</tr>
<tr>
<td>Significant Non-tornadic</td>
<td>Hail ≥5.07 cm Winds ≥ 65 kts.</td>
</tr>
<tr>
<td>Significant tornadic</td>
<td>Same as Significant non-tornadic, but with ≥ F2 tornado</td>
</tr>
</tbody>
</table>
Extreme Value Analysis

• Rare Events
• Only one Maximum in a Dataset
• Very few points above high threshold
• Theory suggests appropriate family of distributions for analyzing extremes
 – Generalized Extreme Value (GEV) df
 – Generalized Pareto (GP) df
 – Point Process characterization
Extreme Value Analysis

• GEV (For large n)

$$
\Pr\left\{ \max(X_1, \ldots, X_n) \leq x \right\} = F(x)
$$

• GP (For large u)

$$
\Pr\left\{ X \leq u + x \mid X > u \right\} = F(x)
$$
Spatial Extremes:
Different Choices for Different Goals

• Interpolate Extremes to Unobserved Locations
• Statistical Inference in the Face of Spatial Dependence
• Identify Sources of Variability in Space
• Analyze Extremes Jointly Over Space
• Smooth Data Over Space?
Spatial Extremes: Methods

- Univariate Extremes with Spatial Covariates
- Multivariate Extremes
- Max-Stable Processes
- Copulas
- Bayesian Hierarchical Modeling (BHM)
- BHM + Max-Stable Processes
- Conditional Extremes
Spatial Extremes: Methods

\[\text{Pr}[T_A < 1, T_B < 1] = \Phi_2(\Phi^{-1}(F_A(1)), \Phi^{-1}(F_B(1)), \gamma) \]

Recipe for Disaster: The formula that Killed Wall Street

Wired Magazine, 2/23/2009, by Feliz Salmon
Conditional Extremes

\[X \mid Y = y, \text{ for } y \text{ large} \]

\(X,Y \) Follow marginal standard EVDs

\(X \) may or may not be extreme.
Conditional Extremes

\[X \mid Y = y, \text{ for } y \text{ large} \]

\[X, Y \text{ follow marginal standard EVDs.} \]

If positively associated, then

\[[X \mid Y = y] = \alpha y + y^\beta Z \]

Conditional Extremes

$\alpha = 0.3, \beta = 0.7$

$\alpha = 0.8, \beta = 0.1$

Keef et al. (2009) Fig. 3
J. Hydrology, 240 - 252
Conditional Extremes

\[[X_1, \ldots, X_n \mid Y = y] = (\alpha_1, \ldots, \alpha_n) y + y^{(\beta_1, \ldots, \beta_n)}(Z_1, \ldots, Z_n) \]

Dependence is determined by the parameters alpha and beta and the distribution function G(z).

\(\alpha \) in \([0, 1)\) describes the strength of dependence, with \(\alpha = 1 \) perfect dependence.

\(\beta \) in \((-\infty, 1]\) describes the scale/dispersion of dependence.

Unknown what G is or should be.
Choose Conditioning Variable

- Something to measure the energy in the field at a given time.
- \(q75 = \text{Upper quartile of } W_{\text{max}} \times \text{Shear (WmSh)} \) over space.
- Univariate quantity over time. Condition on its being large.
Spring WmSh (m/s)^2

1958 - 1978

1979 - 1992

1993 - 1999
1958 - 1978

1979 - 1992

Summer WmSh (m/s)^2

1993 - 1999
1958 - 1978

1979 - 1992

Fall WmSh (m/s)^2

1993 - 1999

Copyright NCAR 2013
Current (1979 – 2004) RCM3

Mean Simulated WmSh from Conditional Model

Mean Simulated WmSh from Conditional Model

5th percentile of Simulated WmSh from Conditional Model

95th percentile of Simulated WmSh from Conditional Model
Summary

• Univariate EVA well studied
• Spatial Extremes is an active area of research
• Current spatial extremes methods require strong assumptions
• Conditional approach alleviates problems with assumptions
• Estimation for conditional approach is tricky, and is an active area of research
• Conditional approach shows a lot of promise for making statistical inferences in the face of spatial dependence
• Challenge in determining how to incorporate future climate model output
Thank you for your attention

Watch for extRemes version 2.0-0

http://www.assessment.ucar.edu/toolkit