3A.3: Spatial Extreme Value Analysis

for Large-Scale Severe Weather Indicators

93rd AMS Annual Meeting

25th Conference on Climate Variability and Change

NARCCAP Session

7th January 2013, Austin, Texas

Eric Gilleland

Co-authors: Barbara G. Brown and

Caspar M. Ammann

Weather and Climate Impacts Assessment Program

National Center for Atmospheric Research

Research Applications Laboratory

erett Nychka

Copyright NCAR 2013

Scale of Extreme Weather Events

2006 European Heat Wave (Fig. from KNMI)

F5 Tornado in Elie Manitoba on 22nd June 2007

Large-scale indicators (CAPE and Shear)

Extreme Value Analysis

- Rare Events
- Only one Maximum in a Dataset
- Very few points above high threshold
- Theory suggests appropriate family of distributions for analyzing extremes
 - Generalized Extreme Value (GEV) df
 - Generalized Pareto (GP) df
 - Point Process characterization

Extreme Value Analysis

GEV (For large n)

$$\Pr\left\{\max\left(X_1,\ldots,X_n\right)\leq x\right\}=F(x)$$

GP (For large u)

$$\Pr\{X \le u + x \mid X > u\} = F(x)$$

Spatial Extremes:

Different Choices for Different Goals

- Interpolate Extremes to Unobserved Locations
- Statistical Inference in the Face of Spatial Dependence
- Identify Sources of Variability in Space
- Analyze Extremes Jointly Over Space
- Smooth Data Over Space?

Spatial Extremes: Methods

- Univariate Extremes with Spatial Covariates
- Multivariate Extremes
- Max-Stable Processes
- Copulas
- Bayesian Hierarchical Modeling (BHM)
- BHM + Max-Stable Processes
- Conditional Extremes

Spatial Extremes: Methods

$$\Pr[T_{\!{}_{\!\!A}}\!\!<\!1,T_{\!{}_{\!\!B}}\!\!<\!1] = \varphi_{\!{}_{\!\!2}}\!(\varphi^{\!{}_{\!\!-\!1}}\!(F_{\!{}_{\!\!A}}\!(1)),\varphi^{\!{}_{\!\!-\!1}}\!(F_{\!{}_{\!\!B}}\!(1)),\gamma)$$

Recipe for Disaster: The formula that Killed Wall Street

Wired Magazine, 2/23/2009, by Feliz Salmon

$$X \mid Y = y$$
, for y large

X,Y Follow marginal standard EVDs

X may or may not be extreme.

$$X \mid Y = y$$
, for y large

X, Y Follow marginal standard EVDs. If positively associated, then

$$[X \mid Y = y] = \alpha y + y^{\beta} Z$$

Heffernan and Tawn (2004, JRSS B, 66 (3), 497 – 546)

$$\alpha = 0.3, \beta = 0.7$$

$$\alpha = 0.8, \beta = 0.1$$

$$[X_1,...,X_n \mid Y=y] = (\alpha_1,...,\alpha_n)y + y^{(\beta_1,...,\beta_n)}(Z_1,...,Z_n)$$

Dependence is determined by the parameters alpha and beta and the distribution function G(z).

 α in [0, 1) describes the strength of dependence, with α = 1 perfect dependence.

 β in (- ∞ , 1] describes the scale/dispersion of dependence.

Unknown what G is or should be.

Copyright NCAR 2013

Choose Conditioning Variable

- Something to measure the energy in the field at a given time.
- q75 = Upper quartile of Wmax * Shear (WmSh) over space.
- Univariate quantity over time. Condition on its being large.

Choose Conditioning Variable

1958 - 1978

1979 - 1992

Winter WmSh (m/s)^2

1993 - 1999

Copyright NCAR 2013

1958 - 1978

1979 - 1992

1958 - 1978

1979 - 1992

Summer WmSh (m/s)^2

1993 - 1999

1958 - 1978

1979 - 1992

Current (1979 – 2004) RCM3

WmSh 375(RCM3) large

5th percentile of Simulated WmSh from Conditional Model

95th percentile of Simulated

Mean Simulated WmSh from Conditional Model

Mean Simulated WmSh from Conditional Model

Summary

- Univariate EVA well studied
- Spatial Extremes is an active area of research
- Current spatial extremes methods require strong assumptions
- Conditional approach alleviates problems with assumptions
- Estimation for conditional approach is tricky, and is an active area of research
- Conditional approach shows a lot of promise for making statistical inferences in the face of spatial dependence
- Challenge in determining how to incorporate future climate model output

Thank you for your attention

Watch for extRemes version 2.0-0

http://www.assessment.ucar.edu/toolkit