A comparison of precipitation occurrence from NCEP's StageIV and CloudSat's Cloud Profiling Radar

Mark Smalley, Tristan L’Ecuyer
Department of Atmospheric and Oceanic Sciences, UW-Madison, Madison, WI
Email: smalley2@wisc.edu

Motivation
- The NCEP StageIV (Lin and Mitchell, 2005) is an hourly precipitation accumulation product assembled from WSR-88D and surface gauge measurements across the CONUS. StageIV is a 4.7km gridded mosaic of the Multi-sensor Precipitation Estimator (MP) produced at each of the twelve NWS River Forecast Centers (RFC).
- Due to its fine resolution, full-CONUS coverage, and manual quality control, it is often considered to be the best long term gridded precipitation observational dataset available.
- Radar beam blockage and elevation, gauge interpolation, and WSR-88D minimum detectable signal inhibit detection of light or frozen precipitation.
- Four years of highly sensitive CloudSat (Haynes et al, 2009) and StageIV observations are collocated for one-to-one comparisons of precipitation detection.

Besides signal sensitivity, detection differences can also result from:
- Interpolation far from the nearest radar (A)
- Beam blockage by terrain (B)
- Unknown or other reasons (C)
- Snow or light precipitation (D)

Data and Results

StageIV
- Hourly precipitation accumulations on a 4.7km grid
- Inputs: NWS Precipitation Processing System & surface gauges
- Manual quality control at each River Forecast Center
- "Gold Standard" of gridded precipitation observations
- Eta/EDAS & ECMWF precipitation assimilation

Weaknesses
- Interpolation of radar & gauge observations in the west
- Minimum detectable signal & lack of coverage at low levels

CloudSat Cloud Profiling Radar
- 94GHz single track polar orbiting radar
- Sensitive to ~30GHz reflectivities
- Detection based on attenuation threshold
- 1.7x1.4km footprint, 500m vertical resolution

Data
- CloudSat 2C-Precip-Column Precip_flag
- NCEP StageIV precipitation accumulations
- 48 months 2007-2010
- 3,147,175 total comparisons

Detection comparisons for where StageIV does but CloudSat does not (StageIV Only). CloudSat does but StageIV does not (CloudSat Only), and both retrievals do observe precipitation (Both).

Conclusions
- This one-to-one comparison study shows that CloudSat observes much more precipitation than StageIV across the northern and especially the northwestern United States.
- Light and frozen precipitation continue to evade detection by even the best multi-sensor quality controlled precipitation observations from the surface.
- Terrain blockage and lack of radar coverage in the west, beam overshoot, and WSR-88D sensitivity contribute to differences in retrieved precipitation fractions across the United States.

References

Accessing the Data
The CloudSat precipitation products used in this study are currently available through the CloudSat Data Processing Center at www.cloudsat.cira.colostate.edu.

Acknowledgements
This work is supported by NASA through a CloudSat/CALIPSO Science Team (CST) research grant.

Effect of Near-Surface Air Temperature