Sensitivity of a Simulated Deep Convective Storm to WRF Microphysical Schemes and **Horizontal Resolution**

Motivation

- Microphysical (MP) parameterizations describe the processes by which water and ice particles grow and precipitate
 - Allow models to represent cloud processes that occur on the microscale and cannot be properly resolved
- Uncertainties in climate simulations and operational forecasts remain due to choice of scheme and resolution

Our research compares different microphysical schemes at different horizontal resolutions to understand their effect on a simulated deep convective storm

Methods

Model used

- Advanced Research WRF (ARW) version 3.3.1—in idealized mode
 - Simulation:
 - -single, isolated deep convective storm - low wind shear
 - environment
- Horizontal Grid Spacing:
- $\Delta x = 2 \text{ km}$
- $\Delta x = 1 \text{ km}$
- $\Delta x = 250 \text{ m}$

Microphysical Schemes Used

Mass Variables	Number variables	
Qc Qr Qi Qs Qg		
Qc Qr Qi Qs Qg	Nr Ni	
Qc Qr Qi Qs Qg Qh	Nc Nr Ni Ns Ng Nh	
Qc Qr Qi Qs Qg**	Nr Ni Ns Ng	
	Mass Variables Qc Qr Qi Qs Qg Qc Qr Qi Qs Qg Qc Qr Qi Qs Qg Qh Qc Qr Qi Qs Qg**	

an include mixed-phase processes ** contains switch to include either graupel or hail

Mass mixing ratio (Qx), Number concentration (Nx), and Hydrometeor species (x), where x = cloud water (c), rain (r), ice (i), snow (s), graupel (g), and hail (h)

- Initial Sounding calculated from the NCAR Community Climate System Model version 3 (CCSM3)
- CAPE threshold of 1000 J/kg
- Averaged for the summer months (June, July, August) for 1970-1999 at Jasper, IN

Annareli Morales¹, Cecille-Villanueva-Birriel², and Hugh Morrison³

¹Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523 ²Earth, Atmospheric and Planetary Sciences Department, Purdue University, West Lafayette, IN, 47907 ³Mesoscale & Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, CO 80301

Resi	ılts				
Maste	er Table				
		WS]	M6		
	Average	Average Rain	Precipitation	Average	Accumulated
	Condensation	Rate	Efficiency	Evaporation	Rain
	(mm/h)	(mm/h)		(mm/h)	(mm)
2 km	0.2931	0.0782	26.68%	0.2171	0.1173
1 km	0.3081	0.0821	26.63%	0.2274	0.1231
250 m	0.5326	0.1482	27.83%	0.3824	0.2223
		Thom	pson		
	Average	Average Rain	Precipitation	Average	Accumulated
	Condensation	Rate	Efficiency	Evaporation	Rain
	(mm/h)	(mm/h)		(mm/h)	(mm)
2 km	0.2885	0.1077	37.34%	0.0901	0.1616
1 km	0.3151	0.1133	35.96%	0.0918	0.1699
250 m	0.5591	0.1967	35.19%	0.1448	0.2951
		Milbran	dt-Yau		
	Average	Average Rain	Precipitation	Average	Accumulated
	Condensation	Rate	Efficiency	Evaporation	Rain
	(mm/h)	(mm/h)		(mm/h)	(mm)
2 km	0.3717	0.1303	35.04%	0.1838	0.1954
1 km	0.3809	0.1232	32.36%	0.1906	0.1849
250 m	0.6398	0.1910	29.85%	0.3230	0.2865
		Morr	rison		
	Average	Average Rain	Precipitation	Average	Accumulated
	Condensation	Rate	Efficiency	Evaporation	Rain
	(mm/h)	(mm/h)		(mm/h)	(mm)
2 km	0.3136	0.1303	41.56%	0.1487	0.1955
1 km	0.3390	0.1352	39.90%	0.1583	0.2029
250 m	0.6187	0.2532	40.93%	0.2651	0.3799

- Large increases in precipitation with increasing resolution
- WSM6 produces lowest surface precipitation amount
- Differences among schemes consistent at different resolution (see Master Table)

Conclusion

Choice of microphysical parameterization and horizontal resoltion has a large impact on surface precipitation, storm structure and dynamics

Future Work

• Running simulations at a higher resolution (e.g. 125 m grid spacing) • Initializing storms with different soundings • Perform further microphysical analysis

Acknowledgements & Contact Info

staff and protégés.

For more information contact: Annareli Morales Email: annareli.morales7@gmail.com

- Thank you for all the help and support to my mentors, Cecille Villanueva-Birriel, Hugh Morrison, and Melissa Bukovsky, as well as all the SOARS
- This work was performed under the auspices of the Significant Opportunities in Atmospheric Research and Science Program.

Mesoscale & Microscale Meteorology