Radioactive nuclei emission analysis from Fukushima Daiichi nuclear power plant by inverse model

Takashi Maki*, Mizuo Kajino, Taichu Tanaka, Tsuyoshi Thomas Sekiyama, Yasuhito Igarashi and Masao Mikami

Meteorological Research Institute, Japan *e-mail: tmaki@mri-jma.go.jp

- 1. Background
- 2. Experimental Method
- 3. Results and Discussion
- 4. Summary and Future plans

Special Symposium on the Transport and Diffusion of Contaminants from the Fukushima Dai-Ichi Nuclear Power Plant: Present Status and Future Directions, AMS 93rd annual meeting, Austin, 6th Jan. 2013.

1-1. Background

- A large amount of radioactive nuclei has been released from the Fukushima Daiichi nuclear power plant in March 2011.
- Although many institutions in Japan and abroad provided radioactive nuclei prediction information. However, such information could not be used effectively for evacuate.

Fukushima Daiichi nuclear power plant (TEPCO HP)

- It is forced to be one reason that as the amount of radioactive nuclei emission is unknown. Therefore, the prediction accuracy is limited.
- One important feature of this accident is that the position of the emitting source is known. Therefore, we consider it possible to estimate the emission time series by combining a transport model, observed data and an inverse model. Such time series of emission amount is significantly important for model hind cast experiment, evaluation of deposition and so on.

 $(\mathbf{A}\mathbf{x} - \mathbf{y})^T \mathbf{C}_{\mathbf{y}}^{-1} (\mathbf{A}\mathbf{x} - \mathbf{y})$ Shows mismatch between observation and model $(\mathbf{x} - \mathbf{x}_p)^T \mathbf{C}_{\mathbf{x}}^{-1} (\mathbf{x} - \mathbf{x}_p)$ Shows mismatch between prior and posterior emission

We determine emission x which minimize cost function S(x).

2-1. Features of our analysis

	Chino et al.	Stohl et al.	This study
Number of Obs.	17(17)	43(5)	50(2)
Transport model	WSPEEDI	FLEXPART	MASINGAR mk-2
Model type	Off-line Lagrange	Off-line Lagrange	On-line Euler
Meteorology	JMA GSM (0.25 × 0.2°)	ECMWF(0.18°) #GFS(0.5°)	JCDAS(1. 25°)
Estimation method	Peak comparison	Inversion	Inversion
Time resolution	Daily	3 hourly	Daily

Meteorological data used in Japan area

An important features of our analysis is that we adopt On-line Eulerian global chemistry transport model (MASINGAR-mk2). We could treat detailed physical process (cumulus convection, turbulent diffusion and deposition processes) in radioactive nuclei transport.

2-2. Our Global Inversion System

Observation data (¹³⁷Cs) About 50 sites (CTBT, Ro5, Hoffmann, Berkeley, Taiwan), daily mean.

Transport model

MASINGAR-mk2 (TL319) by Tanaka et al.,

Prior flux information¹

Chino posterior and Stohl prior

Observation uncertainty²

20% (Obs. error and representative error)

Prior flux uncertainty

Valuable³

Obsevation Point of Cs137 ;Fukushimar–Daiichi nuclear disaster.

¹Prior information

We adopted prior flux (not posterior) by Stohl et al., in order to avoid double use of observation data. Chino posterior uses only Japanese sites.

²Observation data uncertainty

We gave a large observation uncertainty when data in periods of no observation.

³Prior flux uncertainty

The difference between Chino posterior (9PBq) and Stohl prior (29PBq) is too large. Results of the inverse analysis is highly dependent on the a priori information. Therefore, we changed prior flux uncertainties to obtain suitable prior flux uncertainty.

2-3. On-line Global Model (MASINGAR-mk2)

- Included radionuclides: 6 species
 - I-131, Cs-137, Cs-134, Te-132, I-132, Xe-133
 - Xe-133 is treated as non-reacting gas with no dry and wet depositions.
 - Other species are assumed to be attached to aerosols (Lognormal size distribution with r_n =0.07µm, σ =2.0, and hydrophilic)
- Model resolution: Horizontal TL319 (0.56°, approx.60km), vertical 40 layers (ground– 0.4hPa)
- Atmospheric dynamical model: JMA/MRI unified general circulation model (MRI-AGCM3)
- Horizontal wind components are nudged using JMA global analysis (GANAL).
- We released an unit radionuclides at lowest model layer (about 100m) in tagged tracer transport experiments.
- MASINGAR is operationally used in JMA (aeolian dust information)

3-1. Estimated ¹³⁷Cs emission time series

Using both prior flux time series, estimated results tends to similar when we use larger prior flux uncertainties.

The maximum radioactive nuclei emission happened at 15th March.

There are some emission events at 15th – 16th March, 19th - 21th March, 29-30th March, 1st April, 10th April and 17th April.

The estimated emission amount at 15th March are larger than Chino prior emission.

The estimated emission amount at 30th March is smaller than Chino prior emission.

3-2. Estimated ¹³⁷Cs emission amount and statistics

N	
$\mathbf{\nabla}$	v
	$\mathbf{\Lambda}$ n
n=1	

 $\sum_{n=1}^{N} \left(\mathbf{x}_{n} - \mathbf{x}_{p} \right)^{2}$

Table 1: Total radionucleide emission amount from 11th March to 19th April (PBq)								
Prior Flux uncertainty	0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0
Chino prior (9PBq)	9.3	13.3	17.4	18.5	18.8	19.5	20.2	20.7
Stohl posterior (28PBq)	18.2	18.7	19.2	19.5	19.9	20.4	21.1	22.0

Table 2: Square of th	a difference betweer	nrior and	nostorior	omission (TRa/h)
a b c z. Square or the		i prior ariu	posterior	CI111221011 ((IDY/II)

•	-	-		-	-			-
Prior Flux uncertainty	0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0
Chino prior	26.8	56.5	87.0	91.8	87.0	80.4	78.9	78.5
Stohl posterior	93.5	87.5	99.2	102.5	100.8	98.3	97.9	97.8

$$\sum_{n=1}^{N} \left(\frac{\mathbf{x}_n - \mathbf{x}_p}{\mathbf{C}_{\mathbf{x}_n}} \right)^2$$

Table 3: Normalized square of the difference between prior and posterior emission								
Prior Flux uncertainty	0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0
Chino prior	0.4	0.8	1.3	2.0	3.7	6.9	10.4	16.0
Stohl posterior	0.4	0.5	0.8	1.5	2.2	2.8	3.5	4.3

The posterior emission fluxes tend to lager in larger prior flux uncertainties.

The square of the difference between prior and posterior emission shows maximum when prior flux uncertainty is 1.0.

The normalized square of the difference between prior and posterior emission tend to lager.

Considering these points and the difference between Chino prior (9PBq) and Stohl posterior (29PBq), we select prior flux uncertainty as 1.0 (100%).

3-3. Estimated spatial dose rates (¹³⁷Cs)

Inversed dose rates tend to closer to observation data.

In all experiments, MASINGAR could not reproduce higher dose rates.

Considering from these figures, we select Chino posterior emission time series as our prior emission time series.

$$\sqrt{\frac{1}{M}\sum_{m=1}^{M} \left(\frac{\mathbf{A}\mathbf{x} - \mathbf{y}_{m}}{\mathbf{y}_{m}}\right)^{2}}$$

NRMSE =

3-4. Total ¹³⁷Cs emission amount

Author	Total Flux	Remarks
This study	18.5 PBq(±3.6PBq)	(3/11-4/19)
JAEA (Chino et al., revised 2011)	9.1 PBq	(3/10-3/31)
Stohl et al. (2012)	36.6 PBq (20.1 – 53.1)	(3/10-4/20)
Winiarek et al. (2012)	10 – 19 PBq	(3/11-3/26)
Aoyama et al. (ms. in preparation)	15.2 – 20.4 PBq	From obs. and numerical model analysis
MELCOR analysis (Gauntt et al.)	16.4 PBq	From Stohl et al. (2012)
IRSN	30 PBq	From Stohl et al. (2012)
ZAMG	66.6 PBq	From Stohl et al. (2012)

Our estimated total radioactive nuclei emission amount is substantially intermediate values of Chino et al. and Stohl et al. and consistent with Winiarek et al.

4-1. Summary

We have constructed a system which estimates emissions from the Fukushima nuclear power plant radiation dose using observational data, our transport model and an inverse model.

According to the inverse analysis system, The total ¹³⁷Cs release from the Fukushima Daiichi nuclear power plant is 18.5PBq from 11th March to 19th April. The uncertainty of the estimated total release is about 3.6PBq.

Maximum emission takes place on 15th March, we analyzed the emission amount is larger than the a priori information. On the other hand, we could not analyzed the peak daily emissions of 30th March.

Inversed dose rates tend to closer to observations. However, our model could not represent high dose ratio observation data. The limitation of horizontal resolution of the model (about 60km) may be a considerable reason.

To obtain more robust results, we need more observation data and higher resolution chemistry transport model.

4-2. Future plans

We have a plan to estimate a more detailed time series of radioactive nuclei emission amount by utilizing detailed observation data, regional chemistry transport model and inverse model.

#To achieve this objective, we need more high resolution observation data!

We also have a plan to make use of deposition observation data (land and ocean) in our inversion system.

We have a plan to estimate another radioactive nuclei emission time series (¹³³Xe) using this system.

We need to proceed inversion inter-comparison to know how transport model errors affect source term estimation and to obtain robust radioactive nuclei emissions time series.

References

- Bowyer, T. W., Biegalski, S. R., Cooper, M., Eslinger, P. W., Haas, D., Hayes, J. C., Miley, H. S., Strom, D. J., andWoods, V.: Elevated radioxenon detected remotely following the Fukushima nuclear accident, J. Environ. Radioactivity, 102, 681–687, 2011.
- Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., and Yamazawa, H.: Preliminary estimation of release amounts of 1311 and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere, J. Nuc. Sci. Tech., 48, 1129–1134, 2011. 28322, 28342, 28343
- Hoffmann, W., Kebeasy, R., and Firbas, P.: Introduction to the verification regime of the Comprehensive 5 Nuclear-Test-Ban Treaty, Physics of the Earth and Planetary Interiors, 113, 5–9, 2000.
- Hsu, S.-C., C.-A. Huh, C.-Y. Chan, S.-H. Lin, F.-J. Lin, and S. C. Liu: Hemispheric dispersion of radioactive plume laced with fission nuclides from the Fukushima nuclear event, Geophys. Res. Lett., 39, L00G22, doi:10.1029/2011GL049986, 2012
- Maki, T., T. Y. Tanaka, T. T. Sekiyama, and M. Mikami, 2011: The impact of ground-based observations on the inverse technique of Aeolian dust aerosol. SOLA, 7A, 21–24.
- Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S., Tapia, C., Vargas, A., and Yasunari, T. J.: Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys., 12, 2313-2343, 2012.
- Masson, O., et al. : Tracking of airborne radionuclides from the damaged Fukushima Dai-Ichi nuclear reactors by European networks, Environ. Sci. Technol., 45, 7670–7677, doi:10.1021/es2017158, 2011.
- Tanaka, T. Y., and M. Chiba: Global simulation of dust aerosol with a chemical transport Model, MASINGAR. J. Meteor. Soc. Japan, 83A, 255–278, 2005
- Tarantola, A: Chapter 4 in: Inverse Problem Theory: Methods for Data Fitting and Parameter Estimation, Elsevier, Amsterdam, 1987.

Acknowledgement

We thank observation data providers (Comprehensive Nuclear-Test-Ban Treaty Organization(CTBTO), Ring of 5, Hoffmann, Berkeley and Taiwan).

This work is supported by Grants-in-Aid for Scientific Research Scientific Research (B) (24340115) by Japan Society for the promotion of Science.

This work is supported by Grants-in-Aid for Scientific Research on Innovative Areas (24110003) by Ministry of Education, Culture, Sports, Science and Technology in Japan.

Thank you very much for your attentions!!