

AWIPS-2 in NOAA's Hazardous Weather Testbed: Implementation and Display of Experimental Datasets

Darrel M. Kingfield^{1,2}, Travis Smith^{1,2}, Aaron Anderson³

¹Cooperative Institute for Mesoscale Meteorological Studies (CIMMS), Norman, OK ²NOAA/OAR/National Severe Storms Laboratory (NSSL), Norman, OK

³NOAA/NWS/Weather Forecast Office, Norman, OK

Overview

- NSSL Experimental Warning Program (EWP) tests/evaluates operational utility of new science, technology, and products
- 80 new products/datasets implemented in EWP 2012
- 2012: First year next-generation AWIPS software (AWIPS-2) utilized in operations
- AWIPS provides a familiar environment to NWS participants to view current and experimental datasets side-by-side

System Features

- Web mapping interface allows for selection of experimental product domains and radars
 - 4 static multi-radar/multi-sensor (MR/MS) domains
 - 1 floating MR/MS domain
 - 4 floating 3D variational data assimilation (3DVAR) domains
 - 10 floating Radar Product Generators (RPGs) for Level-III data creation

Web interface for selecting radars (left) and the resulting Level-III data in AWIPS-2 (right)

- The flexibility to view and issue warnings using any NWS forecast office's area of responsibility on-the-fly
 - Allows forecasters to track events through multiple office domains

EWP System Architecture

CAVE Workstation Specifications

- 2x Intel Xeon Quad-Core 2.4 GHz CPUs
- Supermicro X8DTG-QF, Motherboard
- 24GB DDR3-1333MHz RAM
- Nvidia GeForce GTX580 1536MB DDR5 2DVI/Mini HDMI PCI-Express Video Card
- 1.5 TB 7200 RPM SATA Hard Drive

Experimental Products

MR/MS

- Isosurface Reflectivity
- Maximum Expected Size of Hail (MESH)
- Merged Azimuthal Shear
- Rotation Tracks

3DVAR

- 3D Wind Fields
- Updraft Strength
- Updraft Helicity
- Divergence
- Vorticity

OUNWRF

- 1km/Composite Reflectivity
- Maximum (Hourly) Updraft Helicity and Column Hail
- 10m Wind Speed

Synthetic GOES-R Datasets

- Convective Products
- Lightning Detection
- Model-Derived Satellite Imagery

Phased Array Radar Innovative Sensing Experiment (PARISE) 2012

- Goal?
 - Evaluate the impact of PAR data on the warning decision making process using AWIPS-2
- How?
 - Raw PAR files passed through RPG with output reflectivity, velocity, spectrum width fields archived
 - Two standalone AWIPS-2 installations process and display the data (EWP9 & EWP10)
 - Additional elevation angles and menus added to assist in decoding and forecaster interrogation
 - Archived PAR data played through the system in displaced real-time

Four-panel display of PAR data from 14 April 2011

The 0.8° and 1.1° elevation angles were added to the AWIPS-2 environment