The Impact of Cloud Type on Surface Radiation and Road Pavement Temperature

Curtis Walker 3rd Year SOARS Protégé

Graduate Student, University of Nebraska – Lincoln

Research Mentor: Michael Chapman Computing Mentor: Amanda Anderson Writing Mentor: Jeff Custer

Impacts of Adverse Weather on Roads

- Safety 24% of U.S. Highway crashes are weather-related; ~673,000 injuries
- Economic Avg. cost per crash is \$14,100; congestion costs ~\$9.5 billion
- Environmental Air quality and local watershed pollution
- Social Inconvenience of traffic delays

Pisano et al. 2008

Tire Friction & Temperature

*BPN – British Pendulum Number, surface friction measurement

- Khasawneh and Liang (2012)
- As temperature increases, tire friction (grip) decreases
- Tire expands vertically, less surface area in contact with ground

Motivation

- Forecast systems are impacted by inaccurate radiation forecasts
- Cloud amount and type influences radiation forecasts
- Inclusion of cloud type may improve forecasts for a variety of end-users

Pavement Temperature Energy Balance Models

Road Weather Information System stations Pavement Temperature Energy Balance Model

Pavement Temperature Forecast

Numerical Weather Prediction Model <section-header>

Weather Decision Support for:➤Snow removal/deicing➤Road maintenance

Driver awareness

Walker et al. 2011

Pavement Temperature Modeling Improvements

Road Weather Information System stations Pavement Temperature Energy Balance Model

More Accurate Pavement Temperature Forecast

MAINTENANCE DECISION SUPPORT SYSTEM

Numerical Weather Prediction Model

Better Cloud Type and Radiation Data

Improved Weather Decision Support & Increased Safety

Walker et al. 2011

Naval Research Laboratory Cloud Classifier

 Utilizes combination of visible and infrared satellite channels to produce cloud type

Pixel-by-pixel
 brightness thresholds

•Day and night operation

1915 UTC 20 June 2012 NRL

Case Study Analysis

- 9 cases from Salisbury, NC, May-June 2012
- Radiation Cloud Type Distribution Analyses

Google Maps

 Theoretical Max Radiation and Water Vapor Assessments

Bulk Statistical Assessment

- June 2012 OK-MESONET
- Radiation Cloud Type Distribution Analyses

Adapted from Clarus Archive data

Case Studies Vs. OK-Mesonet

Overall Cases Solar Radiation - Cloud Type Distribution

OK-Mesonet Cloud Type Grouped By Height

OK-Mesonet distributions similar to case studies

Summary of All 9 Cases

Overall Cases Percent Max Radiation - Cloud Type Distribution

Tactical Forecasting

45 min radiation reduction25 min radiation recovery

Time (UTC)	Mean Radiation (Wm ⁻²)	Cloud Type
1615	628.8	Cumuliform
1625	601.25	Cumuliform
163 <mark>2</mark>	667	Cumuliform
1640	575.3333	Cumuliform
1645	524.2	Cumuliform
1655	339.5455	Cumuliform
1702	231.25	Cumuliform
1710	147.5455	Cumuliform
1715	127.1818	Cumuliform
1725	250.3333	Clear
1732	497	Clear
1740	682.2	Clear
1745	590.5	Clear

Tactical Forecasting

45 min radiation reduction25 min radiation recovery

Time (UTC)	Mean Radiation (Wm ⁻²)	Cloud Type
1615	628.8	Cumuliform
1625	601.25	Cumuliform
1632	667	Cumuliform
1640	575.3333	Cumuliform
1645	524.2	Cumuliform
1655	339.5455	Cumuliform
1702	231.25	Cumuliform
1710	147.5455	Cumuliform
1715	127.1818	Cumuliform
1725	250.3333	Clear
1732	497	Clear
1740	682.2	Clear
1745	590.5	Clear

Challenges: Clear Day?

➢Noisy radiation observations on this "clear" day

Liquid water on the radiometer shows notable signal

Challenges: Clear Day?

0.5

0.4

0.3

0.2

0.1

0

00:00

Conclusions

- It is plausible to remotely sense clouds and quantify their impact on radiation
- Tactical forecasting is also possible
- Clouds and other atmospheric effects impede 60-80% of total possible radiation
- Still uncertainty with other influences on radiation
 Water vapor?
 Aerosols?

Future Work

- Compute regression analysis for OK-Mesonet
- Similar assessment for other regions / seasons
- Test other important cloud properties
- <u>Road pavement temperature</u> + radiation analyses

Acknowledgments

This work was performed under the auspices of the Significant Opportunities in Atmospheric Research and Science Program.

- Science Mentor: Michael Chapman
- Computer Mentor: Amanda Anderson
- Writing Mentor: Jeff Custer
- Sheldon Drobot
- David Currier
- Paul Kucera
- Rebecca Batchelor
- Research Applications Laboratory (RAL)
- UCAR Community

Photo Credits / References

- Title Slide
 - Solar Panels: <u>http://www.flickr.com/photos/knowmybackyard/2394376192/</u>
 - NASCAR: <u>http://bookmarksmarkyourplace.wordpress.com/2011/09/04/ive-never-been-a-nascar-fan-until-now/</u>
 - Snowplow: <u>http://www.paullarosa.com/2010/12/even-snow-plows-get-the-blues/</u>
- Motivation Slide
 - Solar Panels: <u>http://200402986.edu.glogster.com/energy/</u>
 - Snowplow: <u>http://www.longwoodindustries.com/industrial_snow_plow.php</u>
 - NASCAR: <u>http://topics.wsj.com/subject/N/nascar/1676</u>
- Tire Friction Slide
 - Research: Khasawneh, M. A., and R. Y. Liang, 2012: Temperature Effect on Frictional Properties of HMA at Different Polishing Sites. Jordan Journal of Civil Engineering, 6, 39–53.
 - BPN Instrument: <u>www.highwaysmaintenance.com/skidtext.htm</u>
 - Tires: <u>http://sports.espn.go.com/rpm/news/story?series=2&page=nascar101/tires</u>
- Pavement Temperature Energy Balance Model Slide:
 - Road Weather Information System station: http://climateillinois.files.wordpress.com/2012/01/rosa_210x170.jpg
 - Numerical Weather Prediction: <u>http://www.weatheroffice.gc.ca/model_forecast/global_e.html</u>
 - Pavement Temperature Energy Balance Model: <u>http://www.rap.ucar.edu/projects/rdwx_mdss/screenviews.php</u>
 - Pavement Temperature: Microsoft Clip Art
 - Maintenance Decision Support System: <u>http://www.rap.ucar.edu/projects/rdwx_mdss/images/mdss_splash_screen_3_07sm.jpg</u>
 - Clouds: <u>http://www.theboucher.com/?cat=5</u>
- NRL Slide and Cloud Type Data
 - NRL: <u>http://www.nrlmry.navy.mil/sat-bin/goes_cc2/clouds?AREA=cclass_east_area1&PROD=cclass</u>
- Case Study Analysis Slide
 - Radiometer: <u>http://www.radiometrics.com/products.htm</u>
 - Google Maps: <u>https://maps.google.com/maps?q=salisbury,+nc&oe=utf-8&aq=t&client=firefox-a&ie=UTF-8&hl=en&authuser=0</u>
- Bulk Stat Assessment Slide and Mesonet Data
 - Clarus: <u>http://www.clarus-system.com/</u>
 - Weather Station: <u>http://www.novalynx.com/110-ws-16.html</u>
- Summary Slide: <u>http://www.bluefishplc.com/wp-content/uploads/2011/09/road_to_clouds.jpg</u>

Summary

Pavement temperature is crucial to vehicle response to weather conditions
Clouds are the primary source of forecast error due to influence on surface radiation
Better inclusion of clouds in forecast systems will improve pavement temperature modeling

Thank You, Questions?

Cloud Type Groups

Height Cloud Type Groups					
Low	Mid	<u>High</u>	<u>Cumuliform</u>		
Stratus Stratocumulus	Altocumulus Altostratus	Cirrus Cirrostratus Cirrocumulus	Cumulus Cumulus Congestus Cumulonimbus Cirrostratus Anvil		

Thickness / Coverage Cloud Type Groups			
<u>Thick</u>	<u>Thin</u>	Scattered	
Stratus Stratocumulus Cirrostratus Anvil Cumulonimbus	Altostratus Cirrus Cirrostratus	Cumulus Altocumulus Cirrocumulus Cumulus Congestus	

Cloud Type – Location Pixel Matching

- 9 pixel box, 8x8 km
- Most frequent cloud type selected grouped by height

Theoretical Solar Max Calculations

 $F = S_0 (\sin \theta)$

- F top of atmosphere solar flux (Wm⁻²)
- S₀ is the solar constant: 1370 Wm⁻²

➢ Θ: local solar zenith angle

Another Clear Day? – Water Vapor

Clear day comes nowhere near maximum radiation

Mean Radiation Vs. Mean Water Vapor for all 9 cases Correlation = -0.902

OK-Mesonet ALT Cloud Groups

OK-Mesonet Cloud Type Grouped By Thickness / Coverage

Another Tactical Forecasting Case

Part 1 - Case Studies

Case Date (2012)	Cloud / Weather Conditions	Synoptic Comments
19 May	Variable, mostly high clouds	Tropical system offshore (Beryl)
23 May	Overcast with AM rain, late clearing	Stationary front, severe weather to the east
24 May	Variable with AM mist/fog, late clearing	Summer southeast moisture flow
29 May	Mostly cloudy, PM thunderstorms	Tropical depression (Beryl) combined with cold front
30 May	Overcast with AM rain/mist, PM partly cloudy	Tropical depression (Beryl) combined with cold front
2 June	Partly to mostly cloudy all day	AM cold front
3 June	Mostly clear with few/scattered high clouds	Clear, warm front ahead of next system
8 June	Data Not Available	Clear, systems north and south
9 June	Data Not Available	Gulf Coast storm approaching from southwest

British Pendulum Number

- British Pendulum Test
- Pendulum swings with a rubber sensor at the bottom
- Rubber sensor grazes the surface in question
- BPN = 100 x coefficient of friction (μ)

Khasawneh and Liang (2012)

