Cloud Type Impact on Surface Radiation

Motivation

- Forecast systems are impacted by inaccurate radiation forecasts
- Cloud amount and type influences radiation forecasts
- Inclusion of cloud type may improve forecasts for a variety of end-users

Case Study

Tactical Forecasting

- Left: Mean radiation time series for 29 May 2012 with modal cloud color-coded.
- Right: Cumuliform cloud types impact midday radiation, reduction period of 45 minutes and a recovery period of 25 minutes. Such information is useful to develop tactical forecasting products.

Methods

Naval Research Lab Cloud Classifier

- A combination of visible and infrared satellite channels to produce cloud type
- Pixel-by-pixel brightness thresholds
- Day and night operation

Conclusions and Future

- Clouds and other atmospheric particles impede 60-80% of total radiation.
- 32.9% variability in solar radiation on cloudy case days due to clouds
- 7.2% solar radiation variability due to clouds when clear case days considered
- Another significant influence on radiation: Water vapor? Aerosols?
- Next steps are to compute regression statistics for OK
- Conduct similar assessment for other regions / seasons

Research

- Track Weather Forecast System

Cases v OK-Mesonet

- Percentage of max radiation transmission:
 - Low 20%, Mid-level 32%, High 40%, Cumuliform 34%.
 - OK-Mesonet distributions similar to case studies

This work was performed under the auspices of the SOARS Program, which is managed by UCAR and is funded by NSF, NOAA, the Cooperative Institute for Research in Environmental Science, the University of Colorado at Boulder, and by the Center for Multiscale Modeling of Atmospheric Processes.

I would like to thank my communication mentor Jeff Custer, Paul Kucera, Rebecca Batchelor, David Currier and Cindy Halley Gateway.