

Motivation

- Forecast systems are impacted by inaccurate radiation forecasts
- Cloud amount and type influences radiation forecasts
- Inclusion of cloud type may improve forecasts for a variety of end-users

Research

Track Weather Forecast System

This work was performed under the auspices of the SOARS Program, which is managed by UCAR and is funded by NSF, NOAA, the Cooperative Institute for Research in Environmental Science, the University of Colorado at Boulder, and by the Center for Multiscale Modeling of Atmospheric Processes. I would like to thank my communication mentor Jeff Custer, Paul Kucera, Rebecca Batchelor, David Currier and Cindy Halley Gotway.

MICHAEL CHAPMAN³ SHELDON DROBOT³ CURTIS L. WALKER^{1,2} AMANDA ANDERSON³

¹SIGNIFICANT OPPORTUNITIES IN ATMOSPHERIC RESEARCH AND SCIENCE (SOARS), UNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH (UCAR) ²UNIVERSITY OF NEBRASKA - LINCOLN ³RESEARCH APPLICATIONS LABORATORY, NATIONAL CENTER FOR ATMOSPHERIC RESEARCH (NCAR) **CURTIS.WALKER1@GMAIL.COM**

Naval Research Lab Cloud Classifier

- A combination of visible and infrared satellite channels to produce cloud type
- Pixel-by-pixel brightness thresholds

1915 UTC 20 June 2012 NRL Cloud Class

Analysis Techniques

- **Modal Cloud Category Selection** • 9 pixel box, 8x8 km
- **Case Study Analysis**
 - 9 cases Salisbury, NC May-June 2012
 - Radiation-Cloud Type Distribution
 - Theoretical Max Radiation and
 - Water Vapor Assessments
- **Bulk Statistical Assessment**
 - June 2012 OK-MESONET
 - Radiation-Cloud Type Distribution

- Percentage of max radiation transmission: Low 20%, Mid-level 32%, High 40%, Cumuliform 34%.
- OK-Mesonet distributions similar to case studies

• Day and night operation

		٦	Nearest Pixe	el Approximo	tion Schem	е			
1		I	1 1		1 1 1		1		-
ж	*	*	*	*	*	*	*	*	*
<mark>IRL CI</mark> <mark>leares</mark> est Si	oud Class F t Pixels te	Pixels	*	*	*	*	*	*	+
ж	*	*	*	*	*	ж	*	*	\rightarrow
*	*	*	*	*	*	*	*	*	-
*	ж	ж	*	*	*	*	*	*	- *
*	*	*	*	*	*	*	*	*	
*	*	*	*	*	*	*	*	*	- *
*	*	*	*	*		*	*	*	-
									-
*	*	*	*	*	*	*	*	*	-
*	*	*	*	*	*	*	*	*	*
*	*	*	*	*	*	*	*	*	*
*	*	*	*	*	*	*	*	*	>
¥	ı	Ψ	I ¥	ı 4	L		¥	L	
	-80	.45		-80.50 Longitude		-80	.55		-80.

Modal Cloud Category Selection

29 May 2012 Mean Radiation Time Series

Left: Mean radiation time series for 29 May 2012 with modal cloud color-coded.

Right: Cumuliform cloud types impact midday radiation, reduction period of 45 minutes and a recovery period of 25 minutes. Such information is useful to develop tactical forecasting products.

Liquid Water Path Analysis

Despite this being a clear day, something is affecting the radiation.

Right: Liquid water radiometer data shows despite the clear conditions there is some trace signal possibly responsible for radiation variability.

Conclusions and Future

- Another significant influence on radiation: Water vapor? Aerosols?
- Next steps are to compute regression statistics for OK
- Conduct similar assessment for other regions / seasons

Case Study

Tactical Forecasting

	Wicall Radiation	
Fime (UTC)	(Wm ⁻²)	Cloud 1
1615	628.8	Cumuli
1625	601.25	Cumuli
1632	667	Cumuli
1640	575.3333	Cumuli
1645	524.2	Cumuli
1655	339.5455	Cumuli
1702	231.25	Cumuli
1710	147.5455	Cumuli
1715	127.1818	Cumuli
1725	250.3333	Clea
1732	497	Clea
1740	682.2	Clea
1745	590 5	Clea

Mean Radiation

VCAR

Left: Mean radiation time series for 2 June 2012.

• Clouds and other atmospheric particles impede 60-80% of total radiation.

• 32.9% variability in solar radiation on cloudy case days due to clouds

• 7.2% solar radiation variability due to clouds when clear case days considered