P43: Measurements of DSD Second Moment Based on Laser Extinction

John Lane, Easi-ESC, Kennedy Space Center
Linwood Jones, University of Central Florida
Takis Kasparis, Cyprus University of Technology
Philip Metzger, NASA, Kennedy Space Center

Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through rain (or dust in the rocket case) yields an estimate of the 2nd moment of the particle cloud, and rainfall drop size distribution (DSD) in the terrestrial meteorological case.

Luminosity measurements of Apollo 14 landing videos following engine cutoff.

Luminosity comparisons from Apollo 14 landing and ascent videos.

In situ disdrometer calibration by minimizing error function of weighted DSD moments using collocated tipping bucket (left term) + radar reflectivity (center term) + optical density (right term)

\[E = w_1 \sum (M_m(n) - \hat{M}_m(n))^2 + w_2 \sum (M_s(n) - \hat{M}_s(n))^2 + w_3 \sum (M_w(n) - \hat{M}_w(n))^2 \]

Experimental Lab Setup

Side-Scatter laser extinction through JSC-1A lunar simulant

PLUME EROSION SENSOR (PES)

PES BASED TRANSMISSOMETER

Laser luminosity during rain event, Sep 18, 012, 18:15 – 29:00, GMT using a 532 nm, 5 mW green laser, \(L = 75 \text{ m} \).

UCF disdrometer and radiometer test site (roof of Eng Bldg) – JWD on far left, experimental disdrometer (JTD) center and right.

Using image processing algorithms, derived rainfall rate (assuming exponential DSD)