Measuring Density of Lunar Dust

Luminosity measurements of Apollo 14 landing videos following engine cutoff.

Luminosity comparisons from Apollo 14 landing and ascent videos.

Experimental Lab Setup

P43: Measurements of DSD Second Moment Based on Laser Extinction

John Lane, Easi-ESC, Kennedy Space Center Linwood Jones, University of Central Florida Takis Kasparis, Cyprus University of Technology Philip Metzger, NASA, Kennedy Space Center

Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through rain (or dust in the rocket case) yields an estimate of the 2nd moment of the particle cloud, and rainfall drop size distribution (DSD) in the terrestrial meteorological case.

Hydrometeor DSD Camera Reflector Laser PES BASED TRANSMISSOMETER

Side-Scatter laser extinction through JSC-1A lunar simulant

Camera

Lunar

Dust

Lunar Surface

PLUME EROSION

SENSOR (PES)

UCF disdrometer and radiometer test site (roof of Eng Bldg) – JWD on far left, experimental disdrometer (JTD) center and right.

Measuring Rainfall DSD 2nd Moment

PES with 75 m distance to passive target, overlaid with September 18, 2012 Melbourne NEXRAD superresolution data (250 m \times 0.5 $^{\circ}$).

Laser luminosity during rain event, Sep 18, 012, 18:15 - 29:00, GMT using a 532 nm, 5 mW green laser, L = 75 m.

May 11, 2006, 1:00 PM - 3:00 PM

Using image processing algorithms, derived rainfall rate (assuming exponential DSD)