Observations of atmospheric radionuclides from the Fukushima nuclear accident in Tsukuba, Japan 茨城県つくば市での福島事故由来の大気中人工放射 性核種の観測

Yasuhito Igarashi 五十嵐 康人 Mizuo Kajino, Yuji Zaizen & Masao Mikami

Atmospheric Environment & Applied Meteorology Research Department, Meteorological Research Institute (MRI), Japan 気象研究所 環境・応用気象研究部

TALK OUTLINE

- × Aim of the research
- × Extent of the pollution by the Fukushima accident
- × Observations and experimental at the MRI
- × Gamma emitters in the atmosphere at the accident
- Plume transport reconstruction by the modeling
- Radio-Sr in the atmosphere at the accident
- Temporal changes in radio-Cs concentration in the atmosphere
- Long-term monitoring of radioactive fallout (⁹⁰Sr and ¹³⁷Cs); comparison with the Fukushima fallout
- Summaries

POINTS TO BE CLARIFIED ACCORDING TO OBSERVATION AND MODEL

Result of aircraft monitoring by the Ministry of Education, Culture, Sports, Science and Technology

(Total of cumulative Cs-134,137 pollution of the surface (kBq/m²) in the range that the survey completed up to fall, 2011)

November 11, 2011 Announcement

EMISSION ESTIMATE BY NUCLEAR AND INDUSTRIAL SAFETY AGENCY (OCT. 20, 2011)

Nuclide	Half life	Emission (PBq) Emission (PBq	
Kr-85	10.72y		33
Xe-133	5.25d	11000	6500
Te-129m	33.6d	3.3	240
Te-132	3.26d	88	~ 1150
I-131	8.04d	160	~ 1760
I-133	20.8h	42	910
Cs-134	2.06y	18	~ 47
Cs-136	13.1d		36
Cs-137	30.0y	15	85
Sr-89	50.5 d	2	~ 115
Sr-90	29.12y	0.14	~ 10
Pu-239	24065y	0.000032	0.015
Pu-240	6537y	0.000032	0.013

Comparison: Emission by the Chernobyl accident (Chernobyl forum)

SAMPLING, SAMPLE PREPARATIONS AND GAMMA MEASUREMENT

RADIOCHEMICAL SEPARATION OF RADIO-Sr

GAMMA-RAY SPECTRUM OF A HV FILTER SAMPLE

A sample collected at the observation field of MRI, Tsukuba

RADIOACTIVITY IN AEROSOL SAMPLES IN MARCH 2011 MRI HE

In logarithmic scale

Igarashi et al., ICAS2011

TRANSPORT OF RADIOACTIVE PLUME TO TSUKUBA (MAR./15 AND MAR./20)

β-measurement of ⁸⁹Sr and ⁹⁰Sr(⁹⁰Y)

Radio-eqlbrm. ⁹⁰Sr and ⁹⁰Y Maximum β-energy ⁹⁰Sr(28.8y) 0.546MeV ⁹⁰Y(2.67d) 2.240MeV ⁸⁹Sr(50.52d) 1.497MeV

 89 Sr : 90 Sr = 2 : 0.14 (based on NISA estimation) Measured from 2011/Dec/7

Igarashi et al., 2012JpGU

DETERMINATION OF ⁸⁹Sr AND ⁹⁰Sr (MAR. 15, 2011 FILTER SAMPLE)

ATMOSPHERIC CONCENTRATION OF ⁹⁰Sr AT THE MRI IN MARCH 2011

¹³⁷Cs/⁹⁰Sr RADIOACTIVITY RATIO IN MARCH 2011

- ¹³⁷Cs/⁹⁰Sr ratio in the weapon fallout during the1960-70
 ⇒ About 1.6 (Krey et al., 1970)
- Chernobyl accident in 1986 \Rightarrow 95.7 (Aoyama et al., 1991)

Igarashi et al., 2012JpGU

TEMPORAL CHANGE IN ATMOS. RADIO-Cs CONCENTRATION AT THE MRI, TSUKUBA

DECREASE IN ATMOSPHERIC RADIO-CS CONCENTRATIONS

From Sep. 2011 to Aug. 2012

LONG-TERM DEPOSITION RECORD AT THE MRI, TSUKUBA WITH THE FUKUSHIMA FALLOUT

Analysis of the total deposition sample collected monthly

Igarashi et al., 2012JpGU

THE MONTHLY DEPOSITIONS BEFORE AND AFTER THE FUKUSHIMA ACCIDENT

ATMOSPHERIC DEPOSITION AFTER THE FUKUSHIMA ACCIDENT AT THE MRI, TSUKUBA

Unit: Bq/m² /month

Month	⁹⁰ Sr	Erros	¹³⁷ Cs	Errors	Ratio
Mar/2011	4.36	±0.09	2.308E+04	±924	5292
Apr/2011	4.00	±0.07	1.776E+03	±1.3	444
May/2011	0.33	±0.03	330	±0.3	989
Jun/2011	0.13	±0.02	104	±0.1	804
Jul/2011	0.05	±0.01	82.0	±0.1	1808
Aug/2011	0.07	±0.01	31.9	±0.1	435
Sep/2011			45.9	±0.1	
Oct/2011			25.8	±0.1	
Nov/2011			5.9	±0.0	
Dec/2011			20.3	±0.1	
Jan/2012			32.6	±0.1	

Igarashi et al., 2012JpGU

SUMMARY 1

- We have continued observations of atmospheric concentrations of radioactive Sr and Cs, etc. and their depositions at the MRI, Tsukuba before and after the Fukushima nuclear accident.
- The plume transport to the MRI from the Fukushima accident was captured and reconstructed by the transport modeling.
- By tracking the temporal change of total β-activity of Sr, which was resolved into ⁸⁹Sr and ⁹⁰Sr.
- The relative ratio of 70 is estimated for ⁸⁹Sr and ⁹⁰Sr in March 2011, which is about 5 times larger than the NISA estimate.
- The ¹³⁷Cs/⁹⁰Sr ratio was in the range of 400 ~ 20000 in filter samples, suggesting the Cs enrichment during the transport.
- The ¹³⁷Cs monthly deposition at the MRI was (23±0.9)×10³ Bq/m² in March 2011, which is 6 to 7 orders of magnitude larger than pre-accident level.
- Equal amounts of ¹³⁴Cs and ¹³⁷Cs deposited, giving rise to the surface pollution of approximately 50 kBq/m² in Tsukuba, matched nearly with that by the MEXT mapping.

SUMMARY 2

- ⁹⁰Sr depositions of 4.36±0.09 Bq/m² in March 2011, which is less than 0.02% of the total ¹³⁷Cs fallout in the month.
- Level of ⁹⁰Sr deposition was 3-4 orders greater than pre-accident level, which did not reach one by nuclear tests during the 1960s; impact by ⁹⁰Sr will not be so large as radioactive Cs.
- At the end of 2011, the radioactive fallout lowered 3-4 orders from that on the accident, yet the several-Bq/m²-deposition is continuing. This corresponds to the level in the early 1980s when China carried out the last atmospheric nuclear test.
- At the end of 2011, ¹³⁷Cs concentration was at the level of tens µBq/m³. Since the re-suspension continues over a long period of time, it is necessary to watch its future trends.
- Apparent decrease in the atmos. Cs concentration occurs with a half-life of ca. 6 months since Sep. 2011, suggesting that the removal occurs relatively quickly at the 2ndary emission sources.
- Identification of the major source of 2ndary emission to the atmosphere (resuspension) is required.

ACKNOWLEDGMENT

- Y. Igarashi acknowledge the following people for their support and collaboration;
- Taichu Y. Tanaka, Michio Aoyama, Takashi Maki, Tsuyoshi Sekiyam, Koji Adachi, Hiroaki Naoe and Hiroshi Takahashi (Meteorological Research Institute)
- Sako, Kimura, Inukai, Kamioka, Togashi, Kamiya, Yanagida, Nabeshima, Iwai, Takeda, Tomita, Mizo, and Fujikawa (Part-time & temporary staffs)
- × Kazuyuki Kita (Ibaraki University)
- × Kazuo Osada (Nagoya University)
- Yuichi Oki and Naoyuki Osada* (Kyoto University, *currently Tohoku University)