Developing Probabilistic Hail Guidance from Multi-radar, Multi-sensor Data and High Resolution Hail Reports

Kiel L. Ortega
Univ. Oklahoma/CIMMS NOAA/OAR/NSSL

Introduction
Providing probabilistic hail size information can help forecasters make more informed and accurate warning decisions. Grid algorithms could provide guidance on where hail fell; however, previous research has shown large overlaps in parameter spaces for different hail sizes. This presentation will explore using existing techniques and fields to develop probabilistic guidance, for specific or general (i.e., less than N minutes) lead time bins for both nowcasts and post-event analysis.

Data & Methodology
594 operation periods from the Severe Hazards Analysis and Verification Experiment (SHAVE) were selected due to their overall coverage of SHAVE reports along a storm’s path. These operation periods yielded 12,999 SHAVE hail reports (including ‘no hail’ reports). A subset of these data, comprising 101 storms, were selected for a volume scan-by-volume scan subjective analysis and yielded 1287 volumes for analysis. All 12,999 reports were simply compared to output swath fields to investigate post-event uses and the 1287 volumes were evaluated as shown below to investigate storm characteristics/signatures for nowcasting. Radar data for the subjective analysis were WSR-88D Level II, while the derived grid fields were obtained from merged 88D reflectivity data accomplished with WDSS-II.

The above distributions were completed by matching reports to the nearest grid point:
- Category space is saturated for categories greater than severe (25.4+ mm)
- Large overlap with entire 90 percentile of distribution
- Some differences in IQR for all variables between areas with severe hail and areas not receiving hail
- Using one field as a mask and pairing the others, significant overlap is still present
- A “Probability of Hail” field could be generated, but with these 3 fields no size information could be determined

Discussion
- A novel search technique combined with high-resolution hail reports allow for more methodical matching of hail reports to storm attributes
- Significant overlap for different parameters could limit skill of probabilities
- Generalized lead times do not improve potential skill compared to specific lead time bins
- Previously developed hail guidance does not appear to demonstrate sufficient stratification to develop probabilities
- Further work involving different thresholds and other storm attributes will be explored