Estimating the Uncertainty of Satellite Microwave Ocean Surface Wind Observations and the Resulting Cross-Calibrated, Multi-Platform (CCMP) Ocean Surface Wind Analyses

Ross N Hoffman (AER), Robert M Atlas (NOAA/AOML), Joseph Ardizzone (NASA/GSFC), Deborah K Smith (RSS), Mark Leidner (AER), Juan Carlos Jusem (NASA/GSFC)

January 7, 2013
Ross N Hoffman
Atmospheric and Environmental Research, Inc. (AER)
www.aer.com
Introduction :: Desrozières diagnostics (DD)

- DD provide estimates of background (B), observation (O) and analysis (A) errors.
 - Desrozières et al., 2005, QJRMS, Oct, doi:10.1256/qj.05.108
 - (NB: There are two Desrozier et al. 2005 papers in that issue!)
- DD are exact provided the analysis system is optimal
- DD can help to iteratively refine the analysis system towards optimality
- DD are essentially a no-cost output of analysis procedures
 - (Do you already calculate rms increments of A-B, O-B, & O-A?)
Summary

• We examine B, O, A wind speed errors for the
 – Cross-Calibrated, Multi-Platform (CCMP) ocean surface wind data for 2004
 – CCMP is produced using a variational analysis method (VAM) and is hosted at JPL/PO.DAAC

• Error standard deviations vary with latitude for the
 – ECMWF operational surface wind speed error in the range 0.7-1.5 m/s
 – Cross-calibrated RSS wind speed retrievals in the range 0.5-0.8 m/s
 – CCMP analysis wind speed in the range 0.2-0.4 m/s

• DD will help address two VAM issues:
 – Specification of observation errors and the weights used in the VAM cost function
 – Assignment of analysis uncertainty for the CCMP products
Global variation of background errors

- Plotted at each $\frac{1}{4}^\circ$ grid box for all observations in a centered 5×5 grid box stencil

$\langle C_B \rangle^{\frac{1}{2}}$ (m/s)

© Atmospheric and Environmental Research, Inc. (AER), 2013
Desroziers diagnostics (DD)

- The contribution (C) to the estimated covariances from any two observations, i and j are
 - \(C_B = (A_i - B_i)(O_j - B_j) \)
 - \(C_O = (O_i - A_i)(O_j - B_j) \)
 - \(C_A = (A_i - B_i)(O_j - A_j) \)

- The estimated covariance is the sample mean of the \(C_x \) \((x=A,B,O)\)

- Everything is in observation space

- Generally \(O_i \) and \(O_j \) may be at different locations and different times

- Any sensible sample can be used for averaging
Quality control

• The C_x are very noisy
 – QC the observations based on the values of C_x
 – We call this VC-QC (variance contribution QC)

• VC-QC is a gross QC
 – Observations are QC'd when at least one of the C_x is more than 6 std. dev. from the mean

• VC-QC greatly reduces uncertainty in error estimates, with little effect on those estimates
 – One exception noted later
• For observed wind speed bins < 16 m/s, \(<C_x>_{1/2}\) is nearly constant
• For higher wind speeds \(<C_x>_{1/2}\) increase very rapidly
Variation with time difference

- No trends for A or B errors, linear trend for O errors
- $\sqrt{C_x}$ increases from 0.53 (at $|\delta t|=0$) to 0.70 m/s (at $|\delta t|=3$ h)
• Rewrite the basic DD equations specialized for variance (i=j) in terms of $Y = (O-B)/(A-B)$
 - $C_B = Y (A-B)^2$
 - $C_O = Y (Y-1)(A-B)^2$
 - $C_A = (Y-1)(A-B)^2$
 • (Similar relationships can be obtained in terms of $1/Y$ and $(O-B)$)
• Parameterizing $<C_x>$ in terms of $(A-B)^2$ is potentially very useful in estimating the analysis errors of the VAM for each synoptic time and for each grid cell
Large increments \rightarrow large errors

\[<C_x> \quad (m^2/s^2) \]

\[(A-B)^2 \quad (m^2/s^2) \]

- w/o VC-QC
- w VC-QC

Mean values
- B = 1.94
- O = 0.69
- A = 0.17

Mean values
- B = 1.27
- O = 0.39
- A = 0.07
Conclusions

• Applied DD to the VAM outputs of the CCMP project for 2004
• Globally wind speed error standard deviations vary with latitude for the
 – ECMWF operational surface wind speed error in the range 0.7-1.5 m/s
 – Cross-calibrated RSS wind speed retrievals in the range 0.5-0.8 m/s
 – CCMP analysis wind speed in the range 0.2-0.4 m/s
• Errors are fairly constant for observed wind speed up to 16 m/s and are much higher for higher wind speeds
• Observational errors increase with time relative to the analysis time, and vary with platform and the number of observations
• The error variances depend linearly on \((A-B)^2\) and on \((O-B)^2\)
Lessons learned :: DD inconsistencies

• If there are no DD inconsistencies then the data assimilation system (DAS) is internally consistent

• By refining and specializing the samples, inconsistencies are likely to be observed
 – This approach presents opportunities to discover and then mitigate errors in the formulation of the DAS

• Possible sources of inconsistencies
 – Incorrect B or O error covariances in the DAS
 – Unaccounted for biases in the DAS or DD
 – Improper QC in the DAS
 – Non-Gaussian errors
 – Small sample sizes
 – Applying DD in non-observation space (QuikSCAT wind speeds)
Future work

- Tune the VAM and iterate the process
- Apply to wind vectors from QuikSCAT
- Estimate CCMP analysis errors
- Apply to correlations of errors
 - Earth relative geometry
 - Satellite swath geometries
Thank you

- doi:10.1256/qj.05.108
 » Desroziers et al., 2005, QJRMS, Oct
- doi:10.1175/2010BAMS2946.1
 » Atlas et al., 2011, BAMS, Feb
- ross.n.hoffman@aer.com