Supporting Private Sector Decision-Making with NOAA's Interim Climate Data Records (ICDRs)

Jeffrey L. Privette (NOAA), W. Jesse Glance (NOAA), L. DeWayne Cecil (Global Science and Technology) & John J. Bates (NOAA)

10 January 2013

The Academy View

• The National Research Council (NRC, 2004) defines a CDR as a time series of measurements of sufficient length, consistency, and continuity <u>to determine</u> <u>climate variability and change</u>.

A CDR Provides Consistency & Continuity Homogenization reduces artifacts imparted by observing systems,

facilitating meaningful comparisons in space and time

Vegetation Greenness Index

CDRs Can Support Decision Makers Hypothetical problems for climate data and information

- Climate Information Responding to User Needs (CIRUN) Roundtable Q&A*
 - Can we get consistent data series on average and extreme events (e.g., that disrupt business operations) so that current trends in climate can be established? [Want] to inter-comparison locations (state, city) and changes ... through time.
- Energy Utilities
 - What is the closest historical analog (duration, extent, severity) to the this year's hot spell?
- Local Governments and Planners
 - Are city and county water sources (wells, reservoirs) stable given climate change?
- International Shipping
 - Can transport companies get a competitive advantage by investing now in ships for routes through the Northwest Passage?
- Agribusiness
 - How could a company adjust its portfolio of producers, transporters and foreign investment due to climate?
 - Not hypothetical received from constituent. See: http://www.climateneeds.umd.edu

Δ

The Academy View

• The National Research Council (NRC, 2004) defines a CDR as a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change.

The Academy and the Private Sector

• The National Research Council (NRC, 2004) defines a CDR as a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change.

Either/Or ? Both? Same?

 The CDR Program provides proven satellite-derived climate data and information records – including data sets, source codes and documentation – to allow decision-makers, policy-makers and scientists throughout society to make informed decisions and analyses involving future weather and climate.

Different User Needs Require Different Processing Time Lags

Research Support

(Epoch reprocessing of complete period of record, Complete, State-of-the-art)

Decades

Operational Weather

(Quick, Robust, Data asavailable, Algorithm asis, Sensor-unique)

Days

Minutes

7

Time past observation (logarithmic scale)

Years

Weeks

Quality (accuracy, completeness, etc.)

Different User Needs Require Different Processing Time Lags

Research Support

(Epoch reprocessing of complete period of record, Complete, State-of-the-art)

Decision Support

(Routine, Complete, Timely, Climate processing, Consistent in time/space/resolution over periodof-record)

(Quick, Robust, Data asavailable, Algorithm asis, Sensor-unique)

Minutes

Days

Weeks

Years

Decades

Time past observation (logarithmic scale)

Different User Needs Require Different Processing Time Lags

Quality (accuracy, completeness, etc.)

Decision Support

(Routine, Complete, Timely, Climate processing, Consistent in time/space/resolution over periodof-record) Research Support

(Epoch reprocessing of complete period of record, Complete, State-of-the-art)

Operational Weather

(Quick, Robust, Data asavailable, Algorithm asis, Sensor-unique)

Minutes

Days

Weeks

Years

Decades

Time past observation (logarithmic scale)

Sustained Climate Information Flow Emerging International Architecture

CDRs Supporting Farming and Agribusiness

Example: historical context

- 5 km resolution, "wall-to-wall" (globally)
- Historical record from 1981- to current
- Collatoral products
 - Surface Reflectance
 - Leaf Area Index (LAI)
 - **FPAR** (photosynthetically active radiation)

Primary U.S. corn and soybean region

11

Jun

Aug

Sep

Oct

Dec

Nov

Feb

Mar

Apr

May

Jan

Temporal Scale of Agricultural Stakeholder Interests

CDRs Supporting Insurance/Reinsurance Example: Hurricane Trends

Government provision of data

Transition from government to industry

Decision support information

Hurricane intensity trends (Kossin et al. 2007)

CDR Access for Decision Makers

Traditional Large Volume Data Access

Current method of data access and delivery

User Model Of Data Access

Preferred method of same

Going from "drinking from the fire hose" to "sipping a cup of tea"

Reduce the data volume, filter what remains, and mix with relevant ecological data to produce a desired product.

Access to CDRs for Decision Makers: IMPACT

Integrated Marine Protected Area Climate Tools

- Provide climate information to marine resource managers
 - Easy access to proven, relevant CDRs
 - Allows importation of user data
 - Supports climate ecosystem studies
- Include user perspective in design
- Reduces data complexity and size
- Ease of CDR access, uptake
- Customizable to other sectors
 - Water Resource managers
 - Tourism
 - Coastal Inundation (e.g. Sandy)
 - Transportation
 - Education
 - Many more

Climate-related applications often require multiple variables at scales/resolutions smaller/finer than what is contained in most climate data sets.

Summary

CDR Program supports private sector applications

- Interim Climate Data Records offer many advantages over operational weather products
 - More complete in time and space
 - Consistency over multi-satellite period of record
 - Enables searches for historical analogs
 - "Climate quality" algorithms
 - Better ancillary inputs
 - Better sensor functioning knowledge
- ICDRs ultimately refreshed with reprocessed CDRs
 - Research grade (typically), but may lag real time by years
- New tools for easy CDR access, manipulation, downloading

