

The Development of High Resolution Super Probabilistic Forecast

NCEP GEFS Upgrade – February 14 2012

Model and initialization

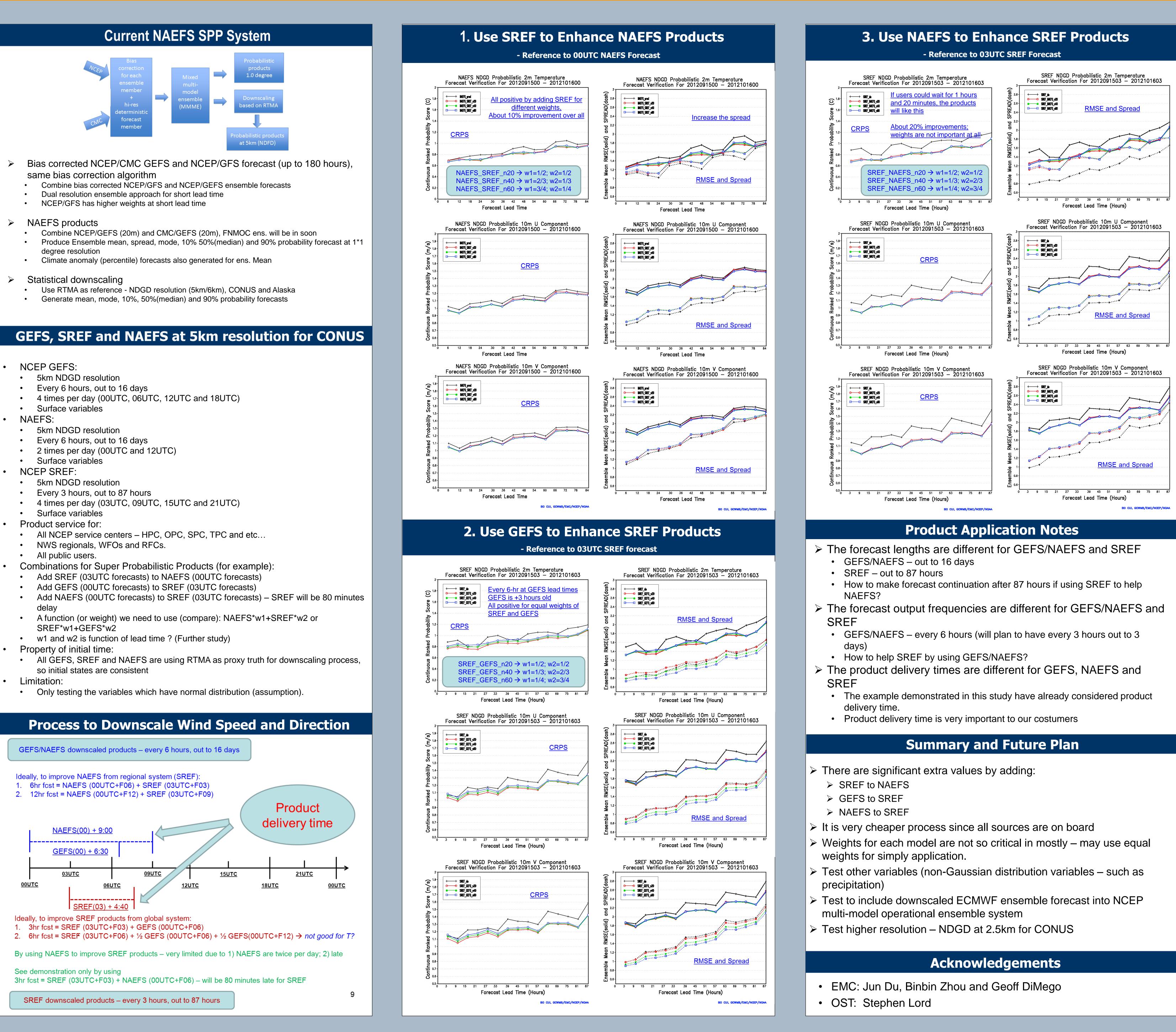
- Using GFS V9.01 (current operational GFS) instead of GFS V8.00
- Improved Ensemble Transform with Rescaling (ETR) initialization Improved Stochastic Total Tendency Perturbation (STTP)
- Configurations
- T254 (55km) horizontal resolution for 0-192 hours (from T190 70km) • T190 (70km horizontal resolution for 192-384 hours (same as current opr)
- L42 vertical levels for 0-384 hours (from L28) Part of products will be delayed by approximately 20 minutes
- Due to limit CCS resources
- 40-42 nodes for 70 minutes (start +4:35 end: +5:45)
- GEFS final product delivery +6:30 hours NAEFS product delivery - +9:00 hours
- Unchanged:
- 20+1 members per cycle, 4 cycles per day
- pgrb file output at 1*1 degree every 6 hours
- GEFS and NAEFS post process output data format
- What do we expect from this implementation?
- Improve general probabilistic forecast skill overall
- Significant improvement of tropical storm tracks (especially for Atlantic basin)

NCEP SREF Upgrade – August 21 2012

- Model Change Model adjustment (eliminate Eta and RSM legacy models and add new
- NEMS-based NMMB model)
- Model upgrade (two existing WRF cores from v2.2 to version 3.3)
- Resolution increase (from 32km/35km to 16km)
- All models run with 35 levels in the vertical and 50hPa model top.
- IC diversity improvement
- More control ICs (NDAS -> NMMB, GDAS -> NMM, RAP blended @ edges w/GFS -> ARW) More IC perturbation diversity (blend of regional breeding and downscaled
- ETR)
- Diversity in land surface initial states (NDAS, GFS, and RAP).
- Product information
- 21 members and 4 times per day (03UTC, 09UTC, 15UTC and 21UTC)
- Every 3 hours out to 87 hours
- Product delivery time unchanged +4:40 hours

NAEFS Current Status – update by 2/14/2012

	NCEP	CMC	NAEFS
Model	GFS	GEM	NCEP+CMC
Initial uncertainty	ETR	EnKF	ETR + EnKF
Model uncertainty/Stochastic	Yes (Stochastic Pert)	Yes (multi-physics)	Yes
Tropical storm	Relocation	None	
Daily frequency	00,06,12 and 18UTC	00 and 12UTC	00 and 12UTC
Resolution	T254L42 (d0-d8)~55km T190L42 (d8-16)~70km	(d0-d16) ~ 66km	1*1 degree
Control	Yes	Yes	Yes (2)
Ensemble members	20 for each cycle	20 for each cycle	40 for each cycle
Forecast length	16 days (384 hours)	16 days (384 hours)	16 days
Post-process	Bias correction (same bias for all members)	Bias correction for each member	Yes
Last implementation	February 14 th 2012	August 17th 2011	


Review of NCEP Statistical Post Process (SPP)

- Purpose
- Improve reliability while maintaining resolution in NWP forecasts
 - Reduce systematic errors (improve reliability) while
 - Not increasing random errors (maintaining resolution) •Retain all useful information in NWP forecast
- Methodology
- Use bias-free estimators of systematic error
- Need methods with fast convergence using small sample
- Easy implementation for frequency upgraded forecast system

Approaches – Computational Efficiency

- Bias Correction : remove lead-time dependent bias on model grid Working on coarser model grid allows use of more complex methods Feedback on systematic errors to model development
- Downscaling: downscale bias-corrected forecast to finer grid Further refinement/complexity added
 - •No dependence on lead time
- Applications:
- GEFS and NAEFS was implemented since 2006
- SREF was implemented in 2012

Bo Cui¹, Yuejian Zhu² and Hong Guan³ ¹FIT at EMC/NCEP/NWS, ²EMC/NCEP/NWS, ³SRG at EMC/NCEP/NWS 5830 University Research Court, College Park, MD 20740

