Colorado Russ S. Schumacher, John M. Haynes, Robert B. Seigel tate Iniversity Colorado State University, Fort Collins, CO

INTRODUCTION

- In May-June 2012, the Deep Convective Clouds and Chemistry (DC3) experiment was conducted, with the goals of understanding the transport of chemical species by deep convective storms
- The project focused on three regional domains: eastern Colorado, northern Alabama, and western Oklahoma/Texas Panhandle
- Forecasters from each region made probabilistic forecasts for deep convection within their domain, and provided briefings to the DC3 science team each morning
- The Colorado forecasters were based at Colorado State University, and included faculty, staff, and students from CSU, and staff from the Cooperative Institute for Research in the Atmosphere (CIRA)
- 8 CSU graduate students were part of the forecast team, gaining valuable experience in convective weather forecasting and a look at the operation of a large field campaign
- This poster includes an overview of the Colorado forecast efforts, along with evaluation of the probabilistic human forecasts of deep convection

THE FORECAST PROCESS

- From 10 May-30 June 2012, forecasters for each of the domains issued probabilistic forecasts and briefings every morning by 8:30 am Central time, in addition to an overview briefing given by the DC3 lead forecaster
- The probabilistic forecasts covered the current day and "day 2", and included guidance about the expected convective mode (isolated, scattered, supercells, MCS, etc.)

Fig. 2: Example of graphical guidance provided to forecast team, showing output from convection-allowing numerical model forecasts

Fig. 3: CSU graduate student Rob Seigel leads the Colorado regional forecast briefing in the CIRA weather center

Forecast support for the Colorado region of the Deep Convective Clouds and Chemistry (DC3) experiment: Overview and evaluation of probabilistic forecasts

Fig. 1: Example probabilistic forecast issued by the Colorado forecast team on the morning of 7 June 2012. Shown here are the probabilities and expected convective mode for each 3-h period from 12 UTC 7 June through 06 UTC 10

FORECAST EVALUATION METHODS

- We wish to objectively evaluate the human-issued probabilistic forecasts of deep convection for each of the three domains
- The NSSL Q2 composite radar reflectivity mosaics (0.01° lat/lon grid, from NWS radars) are used to evaluate the forecasts
- We define "deep convection" here as 15 or more pixels with composite reflectivity \geq 50 dBZ within the domain (a 0.25° buffer on each side was used since forecasters were asked to forecast "in or near" the domain)

Fig. 4: Q2 composite reflectivity at (left) 0300 UTC 8 June 2012, (middle) 0000 UTC 22 May 2012, and (right) 0000 UTC 31 May 2012, with the respective domains outlined in the thick dashed lines

A "yes/no" determination for deep convection was made every 3 h during the DC3 experiment, and the probabilistic human forecasts were evaluated against these observations using the area under the ROC curve and reliability diagrams

FREQUENCY OF CONVECTION

- During May-June 2012 in eastern Colorado, deep convection occurred frequently in the late afternoon and evening, and rarely in the morning and early afternoon, consistent with the climatology of warm-season precipitation in this area
- Alabama had a similar diurnal cycle with more frequent convection
- The OK/TX domain had convection most frequently, but it was also the largest domain in terms of area. The peak was at 0000 UTC with relatively frequent overnight convection

Fig. 5: Diurnal distribution of the frequency of deep convection in the (left) Colorado, (middle) Alabama, and (right) Oklahoma/Texas domains during 1 May-30 June 2012.

ACKNOWLEDGMENTS

- Thanks to the students and staff who woke up early all summer to contribute to the Colorado DC3 forecast team!
- Thanks to DC3 lead forecaster Morris Weisman, Don Burgess, Lamont Bain, and the DC3 science team, for help and guidance
- Thanks to Vidal Salazar and Gregg Stossmeister (NCAR) for organization and maintenance of the DC3 field catalog and forecast archive
- Thanks to Steve Rutledge and Paul Hein (CSU) for providing the Q2 radar composites
- Thanks to CIRA for allowing us to use their weather lab each morning

forecasts

and only one 100% probability.

Fig. 8: As in Fig. 6, but for the Alabama domain

- when they issued 20%.

SUMMARY AND DISCUSSION

- support of the DC3 field experiment
- convection
- enough

curve for all Colorado domain forecasts

Overall, the human probabilistic forecasts for the Colorado domain were skillful, with the Brier Skill Score above 0 and the area under ROC curve > 0.8. The human forecasts were underconfident: when forecasting a 60% probability of deep convection, it occurred 91% of the time, and when forecasting an 80% probability it occurred 100% of the time. However, the sample size for these high-probability forecasts is very small; only two 80% probabilities were issued

Fig. 9: As in Fig. 6, but for Oklahoma/Texas domain

Forecasters for the other domains were also skillful, with comparable scores for all three domains. Alabama forecasters had a slight "dry" bias but were otherwise well calibrated; Oklahoma/Texas forecasters underpredicted at moderate probabilities but were overconfident at the 100% probability category Convective forecasts for all three domains were more skillful on day 1 (i.e., 0-24 hours) than on day 2 (24-42 hours) (not shown)

Scores may have suffered because forecasters sought to predict convection of interest to the field project, and thus reduced probabilities for weaker or shorter-lived convection that still met our criteria for "deep convection" Forecasters were only offered probability choices in increments of 20%, and noted that they would have preferred a 5% or 10% probability on some days

Teams of forecasters provided probabilistic forecasts of deep convection in

• These forecasts were objectively evaluated against radar observations of deep

• The human probabilistic forecasts were found to be skillful, although the forecasts were underconfident – high probabilities were not issued frequently

• We encourage future field campaigns to include a human forecast component that can be evaluated directly against numerical model forecasts