
Poster #808, Third Conference on Transition of Research to Operations LEVERAGING THE GOES-R PROVING GROUND PROCESS AND FORECASTER FEEDBACK TO IMPROVE GOES-R PRODUCTS AND TRAINING MATERIAL

	Research to Operations	
1.	Training/learning paradigms are circular.	
2.	Development of new Forecast Tools is frequently	
	linear – Scientists develop product, the new	
	product is placed in the AWIPS environment for the Forecaster. Is this Optimal?	
3.	Scientists developing forecast tools are not	
	experienced Operational Line Forecasters and	
	may not understand requirements and present	
	techniques.	
4.	Interactions between Scientists and Forecasters	
	generally are not funded	
5.	New Forecast Tools thus frequently do not include	
	ideas and insight from Forecasters; by the time	
	the forecasters see it, the Scientist/developer is	
	funded to do something else	
6.	This example details how a product evolved into	
	something forecasters need based on forecaster	
	observations and suggestions. A circular path to a	
	useful product.	

Scott S. Lindstrom¹, A. Scott Bachmeier¹, Wayne F. Feltz¹, Justin M. Sieglaff¹, Michael Pavolonis², Corey Calvert¹, Lee Cronce¹

¹University of Wisconsin-Madison Space Science and Engineering Center / Cooperative Institute for Meteorological Satellite Studies (SSEC/CIMSS) ²NOAA/NESDIS, Madison, Wisconsin

BOTTOM LINE of FIGURES ABOVE

***** Initial Forecast Decision Tool is not the final version ***** Forecaster feedback is vital

Continued funding to hone product to something that is most useful

FOCUS OF TRAINING v. 1

CI tells you where convection is growing

> Limitations due to cirrus clouds

Cirrus obscured potential convective development areas...a known issue.

> Examples of CI followed by convection (non-quantified)

Forecasters not interested in seeing a binary yes/no output.

FEEDBACK

National Weather Service (NWS) forecaster reviews of the algorithm output hypothesized that more intense cloud-top cooling corresponds to more vigorous shortterm (0-60 min) convective development.

Forecasters continuously identified 'the cirrus problem' as the largest deficiency of the original algorithm at various testbed locations

Characteristics of UWCI/UW-CTC

- Uses multispectral GOES Imager data
- Results available ~2 minutes after satellite scan (distribution to AWIPS takes an additional 5-10 minutes)
- Operates in regular and RSO mode
- Used with GOES-East and GOES-West
- CTC related to subsequent radar signatures
- Flags convective cloud development
 - Everywhere if there is no cirrus
 - During Day even if cirrus exists using changes in Optical Depth
- Low FAR, good POD, error sources understood

Contact Information

scott.lindstrom@ssec.wisc.edu scott.bachmeier@ssec.wisc.edu wayne.feltz@ssec.wisc.edu justin.sieglaff@ssec.wisc.edu corey.calvert@ssec.wisc.edu lee.cronce@ssec.wisc.edu mpav@ssec.wisc.edu

Evolution

Algorithm changed and training changed based on **forecaster evaluations** of the first training.

Version 1: Here's where convection may form

Version 2: Here's some information that is pertinent to how the growing radar cell will look in the near future.

Result: More useful products, happier forecasters

"If you looked at the day where there were the Dallas supercells, I found it really useful... I actually warned on the CTC and it worked out well... It preceded the 60 dBZ and 1" mesh by about 20-30 minutes."

More examples at

http://goesrhwt.blogspot.com/search/label/UWCI