

Joint Polar Satellite System (JPSS) Common Ground System (CGS) Suomi National Polar-orbiting Partnership (SNPP) **Environmental Products**

Kerry Grant, JPSS CGS Chief Scientist, Raytheon Intelligence and Information Systems, Aurora CO Robert Hughes and Nancy Andreas, Northrop Grumman Aerospace Systems, Redondo Beach, CA Mike Haas, Frank Eastman, Gary Mineart, Jane Whitcomb, Joint Polar Satellite System Program Office, Greenbelt MD

The Suomi National Polar-orbiting Partnership (SNPP) and JPSS-1 constitute the first two satellites in the JPSS CGS will produce 25 Environmental Data Records (Figure 1) from the 4 separate instruments flying on the spacecraft (VIIRS, CrIS, ATMS, and OMPS). Note that the EDRs for one instrument, CERES, are not produced by CGS. SNPP launched successfully on October 28, 2011. CGS will also provide Raw Data Records the Global Climate Observation Mission – Water (GCOM-W) launched on May 18, 2012, and produce EDRs for the Department of Defense's Weather Satellite Follow-on (WSF). GCOM-W flies one instruments, including the same VIIRS now flying on SNPP. The 25 products from SNPP and JPSS-1 shown here, along with their associated Sensor Data Records (SDRs) and several Intermediate Products (IPs) are delivered to several government processing centers for operational use, and, most importantly for the general research community, to NOAA's Comprehensive Large Array-data Stewardship System (CLASS). CLASS is responsible for archiving and distributing all SNPP data processing system (known as the Interface Data Processing Segment, or IDPS) are aggregated into 5 minute granules to provide for efficient transport and archival. The information presented here will help users prepare for operational SNPP products (and ultimately, JPSS-1 products), in terms of volume, coverage, and measurement range. The geolocation products (Figure 2) may be packaged separately or combined with the delivered products, depending upon the request method. Environmental Products are grouped by sensor (Figures 3 – 5) and a description of the product itself, its anticipated use, its size based on the actual non-aggregated data granule, coverage, and measurement range is provided.

Geolocation	Granule Size (bytes)	Measurement Range
Common (all xDRs)		Start Time: μs from 1/1/1958 Latitude (positive north): -90° to 90° Longitude (positive east): -180° to 180° Solar Zenith Angle: 0° to 90° Solar Azimuth Angle: (clockwise positive from north) 0° to 360° Satellite Zenith Angle: 0° to 90° Satellite Azimuth Angle (clockwise positive from north): 0° to 180° Satellite Azimuth Angle (clockwise positive from north): 0° to 180°
VIIRS Aerosol Geolocation	1,267,200	same as common, plus
VIIRS Net Heat Flux Geolocation	1,220,400 405,268	Mid Time: μs from 1/1/1958 Height (above MSL): m S/C Position: m S/C velocity: m/s S/C Attitude: arcsec S/C Solar Zenith Angle : 0° to 90° S/C Solar Azimuth Angle: (counterclockwise from X) 0° to 360°
VIIRS NCC GTM Geolocation	144,653,340	same as common, plus Height (Ellipsoid-Geoid separation): m Moon Illumination Fraction: unitless Lunar Zenith Angle: 0° to 90° Lunar Azimuth Angle: (clockwise positive from north) 0° to 360°
VIIRS I-band GTM Geolocation	475,683,000	same as common, plus Height (Ellipsoid-Geoid separation): m
VIIRS M-band GTM Geolocation	118,938,300	same as common, plus Height (Ellipsoid-Geoid separation): m
CrIMSS Geolocation	4,055	Same as common, plus Mid Time: µs from 1/1/1958 Height (above MSL): m S/C Position: m S/C velocity: m/s S/C Attitude: arcsec
OMPS Geolocation	4,055	Same as common, plus Mid Time: µs from 1/1/1958 Latitude Corners (each IFOV Corner): -90° to 90° Longitude Corners (each IFOV Corner): -180° to 180° Relative Azimuth Angle (solar – satellite): degrees Height (Ellipsoid-Geoid separation): m Moon Vector (Lunar position in S/C Coord @ MidTime): m Sun Vector (Solar position in S/C Coord @ MidTime): m S/C Position: m S/C Velocity: m/s S/C Attitude: arcsec

Active Fires Cloud Optical Thickness Imagery Cloud Top Height Sea Ice Characterization Cloud Top Pressure Snow Cover Cloud Top Temperature Sea Surface Temperature Ice Surface Temperature Land Surface Temperature Net Heat Flux Ocean Color/Chlorophyll Surface Type CrIS/ATMS (3) Atmos Vert Moist Profile CERES Atmos Vert Temp Profile Pressure (Surface/Profile) (4) Down LW Radiation (Sfc) O₃ Total Column Down SW Radiation (Sfc) Net Solar Radiation (TOA) Outgoing LW Radiation O₃ Nadir Profile OMPS (2) EDRs with Key Performance Parameters (KPPs)

Figure 1 – SNPP **Environmental Data** Records

		Lunar Azimuth Angle. (Cic	ckwise positive nom north) 0 to 500		IIRS - 3000 km swath	Description		Granule Size	Horizontal	Measurement Range
RS I-band GTM Geo	location 475,683,000	same as common, plus He	eight (Ellipsoid-Geoid separation): m	48	8 scan 85.75 s granule			(bytes)	Cell Size (km)	incustrement hange
SM-band GTM Ge ASS Geolocation	eolocation 118,938,300 4,055	same as common, plus He Same as common, plus Mid Time: μs from 1/1/19 Height (above MSL): m S/C Position: m S/C velocity: m/s	eight (Ellipsoid-Geoid separation): m	CI	loud Mask IP	Classifies pixels as Confidently Clear, Confidently Cloudy, Probably Clear, and Probably Cloudy. A Binary Cloud Map is included as a subset of the product, comprising only those pixels that are Confidently Cloudy o Confidently Clear	Identifying pixels as either cloudy or clear is essential for the performance of all other VIIRS EDRs g	14,745,664	6 ± 1 km; binary map 0.8 km (nadir)	0 - 1.0 HCS area; Binary map - Cloudy, Not Cloudy
PS Geolocation	4,055	S/C Attitude: arcsec Same as common, plus		A	ctive Fires ARP	Provides latitude and longitude of VIIRS pixels with active fires	Operationally important for emergency response. Contributor to climate change factors.	2,457,600	0.75 km (nadir) to 1.6 km (edge)	Latitude (positive north): 0° - 90° Longitude (positive east): 0° - 180°
		Mid Time: μs from 1/1/1958 Latitude Corners (each IFOV Corner): -90° to 90° Longitude Corners (each IFOV Corner): -180° to 180° Relative Azimuth Angle (solar – satellite): degrees Height (Ellipsoid-Geoid separation): m Moon Vector (Lunar position in S/C Coord @ MidTime): m			lbedo	The total amount of solar radiation in the 0.4 t 4.0 micron band reflected by the Earth's surfac into an upward hemisphere (sky dome), including both diffuse and direct components, divided by the total amount incident from this hemisphere, including both direct and diffuse components	o Key component of surface energy budget, ce crucial for evaluation of climate change	12,289,311	0.75 km (nadir) to 1.6 km (edge)	0 - 1.0 Units of Albedo
		Sun Vector (Lunar position in S/C Coord @ MidTime): m Sun Vector (Solar position in S/C Coord @ MidTime): m S/C Position: m S/C Velocity: m/s		CI	loud Base Height	The height above sea level where cloud bases occur	Valuable to U.S. war-fighting capability, e.g. cloud-free line-of-sight forecasts. Needed to model atmospheric radiation budget & understand role of clouds in climate change studies	1,072,896	6 ± 1 km	0 - 20 km
		S/C Attitude: arcsec		CI	loud Cover Layers	Classifies pixels into as many as four layers, and determines the cloud type for each layer	d Valuable to aviation applications	1,267,968	6 ± 1 km	Height: unitless - low, medium, high, > high thresho Types: unitless- stratus, altocumulus, cumulus, cirru cumulus/cirrus
				CI	loud Effective Particle Si	ize The ratio of the third moment of the drop size distribution to the second moment, averaged over a layer of air within a cloud	Needed to model atmospheric radiation budget & understand role of clouds in climate change studies	1,072,896	6 ± 1 km	0-50 micrometer
	Figure 2 – Geo	location Pro	ducts	CI	loud Optical Thickness	The extinction (scattering + absorption) vertical optical thickness of each and every distinguishable cloud layer in a vertical column of the atmosphere as well as the total optical thickness of all layers in aggregate	 Valuable to U.S. war-fighting capability, e.g. cloud-free line-of-sight forecasts. Needed to model atmospheric radiation budget & understand role of clouds in climate change studies 	1,072,896	6 ± 1 km	0.1 to 30 (Tau units)
				CI	loud Top Height	The set of heights of the tops of the cloud layers overlying each cloud-covered earth location	CTH is derived from the CTT and is a crucial parameter used to aggregate clouds into the Cloud Cover/Layers EDR. Valuable to U.S. war- fighting capability, e.g. cloud-free line-of-sight forecasts	1,072,896	6 ± 1 km	0 - 20 km
200 km	Description Usage	Granule	Horizontal Measuren	nent Range	loud Top Pressure	The set of atmospheric pressures at the tops o the cloud layers overlying each cloud-covered earth location	f Needed to model atmospheric radiation budget & understand role of clouds in climate change studies	1,072,896	6 ± 1 km	50 to 1050 mb
2 s granule 2500 km		Size (bytes)	Cell Size (km)	CI	loud Top Temperature	The set of atmospheric temperatures at the tops of the cloud layers overlying each cloud-covered earth location	CTT is a crucial parameter used to aggregate clouds into the Cloud Cover/Layers EDR. It is needed to model atmospheric radiation budget & understand role of clouds in climate change studies	1,072,896	6 ± 1 km	180 to 310 K
32 s ield of				La	and Surface Temperature	e The skin temperature of the uppermost layer of the land surface	of Important for crop monitoring, indicator of greenhouse effect & energy flux between atmosphere & ground. Key component of the earth radiation budget	12,288,032	0.75 km (nadir) to 1.6 km (edge)	213 К - 343 К
eric Vertical A s Profile rat	set of estimates of average mixing tio (ratio of the mass of water vapor the sample to the mass of dry air) in	g Term	14 (clear) 0 - 30 46 (cloudy)	0 g/kg	urface Type	One of the seventeen International Geosphere Biosphere Program (IGBP) classes	 Important for land management & monitoring, implementation of policies related to climate change & most importantly inputs into biogeochemical and hydrological models. Also used to support decision aids for precision guided munitions. 	12,288,016	1 km	Type: 17 distinct types Coverage: 0 - 100%
eric Vertical A s	ecified points along a local vertical set of estimates of the average Weather Prediction, Lon	g Term	14 (clear) 180K	- 330K	let Heat Flux	Net surface flux (long-wave and short-wave radiation, latent heat flux and sensible heat flux) over oceans ;][;[kkpk)	Climate change research efforts and estimation of energy flux at air-sea boundary crucial to El Nino Southern Oscillation (ENSO) modeling efforts	694,944	20 km	-2000 to +2000 W/m ²
cure Profile atr dir spo	mospheric temperature in three-Climatology mensional cells centered on ecified points along a local vertical	52,234	52,234 46 (cloudy)		Ocean Color Chlorophyll	Ocean color is defined as the spectrum of Pr normalized water-leaving radiances (nLw). All th geophysical quantities of interest, e.g., the ot concentration of phytoplankton pigment da	Provide operational data for quantification of the ocean's role in the global carbon cycle and other biogeochemical cycles, to acquire global data on marine optical properties with	174,489,644	0.75 km (nadir) to 1.6 km (edge)	Ocean color: 0.1 - 40 W m ⁻² micrometer ⁻¹ sr ⁻¹ Optical properties, absorbtion: 0.01 - 10 m ⁻¹ Optical properties, scattering: 0.01 - 50 m ⁻¹ Optical properties, chlorophyll: 0.05 - 50 mg/m ³
eric Vertical A s Profile pre the	set of estimates of the atmospheric Weather Prediction, Lon essure at specified altitudes above Climatology e earth's surface	g Term	46 10 - 10	050 mb		chlorophyll a (chlorophyll-a) and the inherent optical properties of absorption and scattering of surface waters (ocean optical properties), an derived from these nLw values	emphasis on frontal zones and eddies, and to To identify bioluminescence potential in redifferent ocean areas			,
Profile		55,613	14 pp	Su	uspended Matter	Report of the presence of suspended matter such as dust, sand, volcanic ash, SO2, or smoke at any altitude	Provides information that will improve detection of population hazards (volcanic ash, smoke etc.), reducing risk to military operations and human life. Climate change research	14,742,979	1.6 km	Detection: Flag cells where atmosphere contains su matter Type: Dust, sand, volcanic ash, sea salt, smoke, SO2 Concentration: 0 - 1000 microgram/m ³ for smoke
	Figure 3 – Ci	IMSS Produ	cts	Ve	egetation Index	Normalized difference vegetation index (Top of the Atmosphere) is most directly related to absorption of photosynthetically active radiation, but is often correlated with biomass or primary productivity. This product also contains a Top of the Canopy Enhanced	f To provide global database of VI. Inputs into studies regarding spatial and temporal variability of vegetation. TOA NDVI will provide continuity with the AVHRR heritage product. TOC EVI will provide continuity with the MODIS heritage product	68,812,870	0.375 km (nadir) to 0.8 km (edge)	NDVI units: -1 to + 1 EVI units: -1 to +1

OMPS TC: 5 scan, 38 second granule NP: 1 scan, 38 s granule LP: 1 scan, 38 s granule	Description	Usage	Granule Size (bytes)	Horizontal Cell Size (km)	Measurement Range
Ozone Total Column	The amount of ozone in a column of the atmosphere, along the line of sight of the sensor, measured in Dobson Units (milli-atm-cm).	Used by Parties to the "Montreal	128,819	≤ 46.47 km @ Nadir	50 - 650 milli-atm-cm
Ozone Nadir Profile	Profiles: Solution profile individual ozone amounts (matm-cm) in 12 SBUV layers (SBUV layer 1 first). Volume mixing ratio(from spline interpolation) of ozone at 19 pressure levels in order of increasing atmospheric pressure (0.3 mb to 100 mb)	the Ozone Layer" to track progress on elimination of these substances. Used to improve numerical weather prediction and support requirements for depiction of the upper atmosphere	763	250 km	profile: milli-atm-cm mixing ratio: ppmv

Figure 4 –	OMPS	Products

	geolocation of the horizontal cell in a narrow band about the specified wavelength	radiative forcing on the climate, input to radiative transfer models used to calculate this forcing, critical for military operations. Planning tools for target visibility, and a required input to atmospheric correction algorithms		(edge)	
Aerosol Particle Size	Aerosol particle size is characterized by the Ångström wavelength exponent defined by: α = - (In t(λ 1) – In t(λ 2))/(In λ 1 – In λ 2)	Indicator of the amount of direct aerosol radiative forcing on the climate, input to radiative transfer models used to calculate this forcing, critical for military operations planning tools, and a required input to atmospheric correction algorithms	1,152,048	6 km (nadir) to 12.8 km (edge)	-1 to +3 alpha units
Ice Surface Temperature	The skin temperature of the uppermost layer of sea ice	^E Long term data set of IST can be used to assess greenhouse effect and climate changes in polar regions	12,288,032	0.8 km (nadir) to 1.6 km (edge)	213 К - 275 К
Imagery	A two-dimensional array of locally averaged absolute in-band radiances at the top of the atmosphere measured in the direction of the viewing sensor, and the corresponding array of Equivalent Black Body Temperatures (EBBTs) if the band is primarily emissive, or the corresponding array Top-Of-the-Atmosphere (TOA) reflectances if the band is primarily reflective during daytime.	Essential to creation of manually generated (or semi-automated) application related products: Cloud Cover & Cloud Type, Ice Edge Location & Concentration, and military applications	NCC (DNB): 9,643,148 M Band: 12,857,520 I Band: 63,543,707	Imagery bands < 0.4 km (nadir) to < 0.8 km (edge); DNB: 0.82 km	5DNB (Day & Night): 3x10 ⁻⁵ - 176 W/(m ² sr) 11 Band (Day Only): 5.0 - 707 W/(m ² sr) 12 Band (Day Only): 12.4 - 345 W/(m ² sr) 13 Band (Day Only): 1.5 (TBD) - 68 W/(m ² sr) 14 Band (Day & Night): 210(TBD) - 498 K 15 Band (Day & Night): 190(TBD) - 459 K
Sea Ice Characterization	The time that has passed since the formation of the surface layer of an ice covered region of the ocean	f Long term trends in extent of polar sea ice serves as valuable indicator of global climate change. Accurate General Circulation Models (GCM) in the polar regions depends on correct distinction between multi year and newly formed ice. Important for commercial and military operations in polar regions	19,660,800	2.4 km	Ice-free, New/Young ice, All other ice
Snow Cover Depth	The horizontal and vertical extent of snow cover. In addition, a binary product will give a snow/no snow flag	Important in calculating earth radiation budget. General Circulation Models (GCM) do not simulate arctic climate well, driving need for improved measurements of global snow cover	Map: 39,321,604 Fraction: 14,745,622	0.8 km (nadir) to 1.6 km (edge) (clear sky)	0 - 100% of HCS
Sea Surface Temperature	A measurement of the temperature of the surface boundary layer (skin) and upper 1 meter (bulk) of ocean water	Initialize weather prediction models, military applications, climate change research, etc.	19,660,848	0.75 km (nadir) to 1.3 km (edge) (clear sky)	271 K - 313 K

6 km (nadir) to

42.01

0.0 to 2.0 units of Tau

Vegetation Index

Aerosol Optical Thickness The extinction (scattering + absorption) optical Indicator of the amount of direct aerosol

Figure 5 – VIIRS Products