Joint Polar Satellite System Common Ground System (JPSS CGS)

Algorithm Development Library for Environmental Satellite Missions

Kerry Grant, JPSS CGS Chief Scientist
Raytheon Intelligence and Information Systems, Aurora CO
Gary Metz, IDPS ING/PRO Software Manager
Bryan Henderson IDPS ADL Lead Software Engineer
Paul Siebels, IDPS Deputy Software Manager
Raytheon Intelligence and Information Systems, Omaha, NE

scientist can use to create algorithms that will plug into a JPSS CGS instantiation.

Rayrheon

After the successful launch of the JPSS’s first satellite, the Suomi National Polar-orbiting Partnership (S-NPP) spacecraft, on Oct. 28, 2011, the Intensive Calibration Validation campaign began in earnest. As Cal/Val proceeds,
changes to the science will need to migrate into the operational system. In addition, as new techniques are found to improve, supplement, or replace existing products, these changes will also require implementation into the
operational system. In the past, operationalizing science algorithms and integrating them into active systems often required months of work. In order to significantly shorten the time and effort required for this activity, Raytheon has
developed the Algorithm Development Library (ADL). The ADL enables scientist and researchers to develop algorithms on their own platforms, and provide these to Raytheon in a form that can be rapidly integrated directly into the
operational baseline. As the JPSS CGS is a multi-mission ground system, algorithms are not restricted to S-NPP or JPSS missions. The ADL provides a development environment that any environmental remote sensing mission

Advantages: The use of the ADL provides significant time and cost savings during algorithm development and implementation into an operational baseline. It is estimated that by using the ADL, algorithm developers can achieve 10 - 26% cost savings and that

operational conversion/implementation can achieve 25 — 50% cost savings compared to the cost of typical algorithm development and conversion into an operational baseline.

Usage: The ADL is a tool with a standardized Input-Processing-Output (I-P-O) framework into which algorithm scientists can “plug” their algorithms (Figure 1). Figure 2 illustrates how ADL is used by the algorithm developer to create compatible science code, and by
the operationalization engineer to implement the code in an operational environment. ADL enables the process by providing standardized framework for “Input to Processing” and “Processing to Output” interfaces, standardized toolkits and development GUIs for
interfaces, XML GUI editor to define XML product formats that can be processed by the ADL software to auto-generate the input and output software, alleviating the developer of this effort, capability for scientific algorithm developers to design and implement their
algorithms on little endian or big endian computing platforms, and “Plug-n-Play” compatibility with operational baseline.

Inputs
Creates inputs and uses ADL XML
editor to generate input data
File Based structures
ADL

Suomi NPP — OMPS (NASA/NOAA)

Inserts delivered XML for inputs and
outputs into operational baseline

“Plug-n-Play”

Algorithm Core
Processing (P)

[-P-O Framework

Creates algorithm using ADL code
auto-generation capabilities and

follows coding guidelines Outputs

File Based

Uses ADL XML editor to generate output

data structures Development

Environment

Operational

Envi

X &
v

Suomi NPP — CrIS (NASA/NOAA)

Operations Engineer

Suomi NPP — Chlorophyll
(US Naval Research Lab Stennis)

Compiles and inserts delivered
algorithm into operational
baseline

Executes algorithm and
compares results to
developer-delivered
outputs

Algorithm Core
Processing (P)

Inputs Outputs

Inserts delivered binary input data
files into the operational database
with proper metadata

ronment

Figure 2 — ADL Concept of Usage

Algorithm Developer

Uses the ADL tool and I-P-O Framework to design and develop the algorithm code
in their development environment. Uses the code auto-generation capabilities and
ADL coding guidelines to create code compliant with operational standards.
Coding can be done on UNIX AIX or LINUX little endian or big endian computing
platforms and in C, C++, or Fortran languages.

Operations Engineer
Inserts the delivered algorithm, XML, and inputs into the operational baseline. Completes

d

d
d
d

gorit
gorit
gorit
gorit

nm conversion and implements operations-unique functionalities. Performs
nm results comparisons to ensure acceptable results are obtained once the
nm is fully operational. The operational algorithm can then be returned to the

nm developer if enhancements or other modifications are needed.

File Based
CMD Line

.

Science Algorithm Developer
working algorithm in their environment

yYrYyyvwvy

Alg Development
Integration/OPS

File Based
CMD Line

/

¥ Yy¥Yryrr

_

DMS Memory
Defined APls

PRO Common Framework

L]
RN

|IDPS Integrated Algorithm

DMS Memory
Defined APIs

Figure 1 — ADL Isolates Production Software from Science Algorithms

ADL Architecture

AlgorithmProcessing .gn
III III III
NC/AUX/GIR SDR/TDR EDR/IP mﬁ:’:‘:mm Al Usare
Processing Generation Generation l Unpackage
F 9 F F 9 Format
ALK fiE n.:.Pn{ " _’}ﬁ' ’;ﬁ §$ Elm HDF Tools
* Transient Inventory HDF Formatter |
T HDF Unpackager |« EI-II-SEEE
Data Types
Package: e § o
Binary sz 4, File System
Files Storage
Data Storage
Time Primary Reuse Source
Granule ID [_|PRO
[]DMs
[1]DDs
[INF
[]External
. — 2 TOC/Web
Processing Subsystem DDS MSDS/ADR
[]IDPSDPE I I; |' MSD Receipt 2| Centrals
Other Segments NC/AUX/GIA||l| SDRTDR # EDR/P MSD Distribution erupimenso | C3S/
External Processing Generation Generation ANC >
3 . s o ISFI
Spacecraft " - & ASF
: = B P P o B e e L Data Delivery
Ingest Subsystem 3 A s
C38 g' - Shared Cache & Invento ' ﬂ | | Request Handling Centrals/
Ingest . v —) CLASS/
Sensor Data All bnternat | Format&Delivery Lu NSIPS/PST/

»f

Ingest

»

UK MSD SC Auxiliary Data
|

— " Dzt
Stz &
Conirol

Operator [**

GUI

Data Types

On-Line

Data Storage

Qu

Operator/User GUI |

a]'ﬁ AEc]

1 | » _mw_ & Inventory !! Data Quality .

t Mizsi . M : nginssrs
m:.ln.m = . ;ﬂi:urtﬁ[?;:: Inll W Data N Monitoring Subsystem ::;fh;ﬁ; Ep.llg-:sum
i > Management Subsystem | mrose=r . 38
MSDS]| 5,2e T : | DQEGU | s

. Procass Praoaszn I
S Drop Work Flow wizon staus & Contrl I i I I | Data Acquire _u
ISF Scheduling ——* Production andinfrastructure management . * | External
] : Procszsing Communication services and utilities | " Data Preparation HJ ot
L radu
Operator Enterprise Web 1 Infrastructure | = Qualiy Monitor Lu P PR
C3S| .- GUI ¥ Management Server Subsystem . ISF
Schadula + I
: — | ProductGenerate HJ
Pri;l;:ar;ng rp::lm AngEsE + Requastand Stam I MEDE
En ress Managamant [
e C3S| [External g‘?ﬁs | ProductDisseminate _H s
I

(NSOF Only)

Figure 3 — ADL Simplifies the Algorithm Developer's Work Environment

