
Figure 2 – ADL Concept of Usage

Kerry Grant, JPSS CGS Chief Scientist

Raytheon Intelligence and Information Systems, Aurora CO

Gary Metz, IDPS ING/PRO Software Manager

Bryan Henderson IDPS ADL Lead Software Engineer

Paul Siebels, IDPS Deputy Software Manager

Raytheon Intelligence and Information Systems, Omaha, NE

After the successful launch of the JPSS’s first satellite, the Suomi National Polar-orbiting Partnership (S-NPP) spacecraft, on Oct. 28, 2011, the Intensive Calibration Validation campaign began in earnest. As Cal/Val proceeds,

changes to the science will need to migrate into the operational system. In addition, as new techniques are found to improve, supplement, or replace existing products, these changes will also require implementation into the

operational system. In the past, operationalizing science algorithms and integrating them into active systems often required months of work. In order to significantly shorten the time and effort required for this activity, Raytheon has

developed the Algorithm Development Library (ADL). The ADL enables scientist and researchers to develop algorithms on their own platforms, and provide these to Raytheon in a form that can be rapidly integrated directly into the

operational baseline. As the JPSS CGS is a multi-mission ground system, algorithms are not restricted to S-NPP or JPSS missions. The ADL provides a development environment that any environmental remote sensing mission

scientist can use to create algorithms that will plug into a JPSS CGS instantiation.

Operations Engineer

Algorithm Developer

File Based

Inputs

File Based

Outputs

Creates inputs and uses ADL XML

editor to generate input data

structures

Algorithm Core

Processing (P)

I-P-O Framework

ADL

Algorithm Core

Processing (P)

I-P-O Framework

Operational

Uses ADL XML editor to generate output

data structures

“Plug-n-Play”

Development

Environment

Operational

Environment

Database

Inputs Outputs

Inserts delivered XML for inputs and

outputs into operational baseline

Inserts delivered binary input data

files into the operational database

with proper metadata

Compiles and inserts delivered

algorithm into operational

baseline

Executes algorithm and

compares results to

developer-delivered

outputs

Creates algorithm using ADL code

auto-generation capabilities and

follows coding guidelines

Algorithm Developer

Uses the ADL tool and I-P-O Framework to design and develop the algorithm code

in their development environment. Uses the code auto-generation capabilities and

ADL coding guidelines to create code compliant with operational standards.

Coding can be done on UNIX AIX or LINUX little endian or big endian computing

platforms and in C, C++, or Fortran languages.

Operations Engineer

Inserts the delivered algorithm, XML, and inputs into the operational baseline. Completes

algorithm conversion and implements operations-unique functionalities. Performs

algorithm results comparisons to ensure acceptable results are obtained once the

algorithm is fully operational. The operational algorithm can then be returned to the

algorithm developer if enhancements or other modifications are needed.

Figure 1 – ADL Isolates Production Software from Science Algorithms

Figure 3 – ADL Simplifies the Algorithm Developer’s Work Environment

Suomi NPP – CrIS (NASA/NOAA)

Suomi NPP – OMPS (NASA/NOAA) Suomi NPP – Chlorophyll

(US Naval Research Lab Stennis)

Advantages: The use of the ADL provides significant time and cost savings during algorithm development and implementation into an operational baseline. It is estimated that by using the ADL, algorithm developers can achieve 10 - 25% cost savings and that

operational conversion/implementation can achieve 25 – 50% cost savings compared to the cost of typical algorithm development and conversion into an operational baseline.

Usage: The ADL is a tool with a standardized Input-Processing-Output (I-P-O) framework into which algorithm scientists can “plug” their algorithms (Figure 1). Figure 2 illustrates how ADL is used by the algorithm developer to create compatible science code, and by

the operationalization engineer to implement the code in an operational environment. ADL enables the process by providing standardized framework for “Input to Processing” and “Processing to Output” interfaces, standardized toolkits and development GUIs for

interfaces, XML GUI editor to define XML product formats that can be processed by the ADL software to auto-generate the input and output software, alleviating the developer of this effort, capability for scientific algorithm developers to design and implement their

algorithms on little endian or big endian computing platforms, and “Plug-n-Play” compatibility with operational baseline.

